Documentation

Mathlib.Logic.Function.Conjugate

Semiconjugate and commuting maps #

We define the following predicates:

def Function.Semiconj {α : Type u_1} {β : Type u_2} (f : αβ) (ga : αα) (gb : ββ) :

We say that f : α → β→ β semiconjugates ga : α → α→ α to gb : β → β→ β if f ∘ ga = gb ∘ f∘ ga = gb ∘ f∘ f. We use ∀ x, f (ga x) = gb (f x)∀ x, f (ga x) = gb (f x) as the definition, so given h : Function.Semiconj f ga gb and a : α, we have h a : f (ga a) = gb (f a) and h.comp_eq : f ∘ ga = gb ∘ f∘ ga = gb ∘ f∘ f.

Equations
theorem Function.Semiconj.comp_eq {α : Type u_1} {β : Type u_2} {f : αβ} {ga : αα} {gb : ββ} (h : Function.Semiconj f ga gb) :
f ga = gb f
theorem Function.Semiconj.eq {α : Type u_1} {β : Type u_2} {f : αβ} {ga : αα} {gb : ββ} (h : Function.Semiconj f ga gb) (x : α) :
f (ga x) = gb (f x)
theorem Function.Semiconj.comp_right {α : Type u_1} {β : Type u_2} {f : αβ} {ga : αα} {ga' : αα} {gb : ββ} {gb' : ββ} (h : Function.Semiconj f ga gb) (h' : Function.Semiconj f ga' gb') :
Function.Semiconj f (ga ga') (gb gb')
theorem Function.Semiconj.comp_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} {fab : αβ} {fbc : βγ} {ga : αα} {gb : ββ} {gc : γγ} (hab : Function.Semiconj fab ga gb) (hbc : Function.Semiconj fbc gb gc) :
Function.Semiconj (fbc fab) ga gc
theorem Function.Semiconj.id_right {α : Type u_1} {β : Type u_2} {f : αβ} :
theorem Function.Semiconj.id_left {α : Type u_1} {ga : αα} :
theorem Function.Semiconj.inverses_right {α : Type u_1} {β : Type u_2} {f : αβ} {ga : αα} {ga' : αα} {gb : ββ} {gb' : ββ} (h : Function.Semiconj f ga gb) (ha : Function.RightInverse ga' ga) (hb : Function.LeftInverse gb' gb) :
theorem Function.Semiconj.option_map {α : Type u_1} {β : Type u_2} {f : αβ} {ga : αα} {gb : ββ} (h : Function.Semiconj f ga gb) :
def Function.Commute {α : Type u_1} (f : αα) (g : αα) :

Two maps f g : α → α→ α commute if f (g x) = g (f x) for all x : α. Given h : Function.commute f g and a : α, we have h a : f (g a) = g (f a) and h.comp_eq : f ∘ g = g ∘ f∘ g = g ∘ f∘ f.

Equations
theorem Function.Semiconj.commute {α : Type u_1} {f : αα} {g : αα} (h : Function.Semiconj f g g) :

Reinterpret Function.Semiconj f g g as Function.Commute f g. These two predicates are definitionally equal but have different dot-notation lemmas.

theorem Function.Commute.semiconj {α : Type u_1} {f : αα} {g : αα} (h : Function.Commute f g) :

Reinterpret Function.Commute f g as Function.Semiconj f g g. These two predicates are definitionally equal but have different dot-notation lemmas.

theorem Function.Commute.refl {α : Type u_1} (f : αα) :
theorem Function.Commute.symm {α : Type u_1} {f : αα} {g : αα} (h : Function.Commute f g) :
theorem Function.Commute.comp_right {α : Type u_1} {f : αα} {g : αα} {g' : αα} (h : Function.Commute f g) (h' : Function.Commute f g') :
theorem Function.Commute.comp_left {α : Type u_1} {f : αα} {f' : αα} {g : αα} (h : Function.Commute f g) (h' : Function.Commute f' g) :
theorem Function.Commute.id_right {α : Type u_1} {f : αα} :
theorem Function.Commute.id_left {α : Type u_1} {f : αα} :
theorem Function.Commute.option_map {α : Type u_1} {f : αα} {g : αα} :
def Function.Semiconj₂ {α : Type u_1} {β : Type u_2} (f : αβ) (ga : ααα) (gb : βββ) :

A map f semiconjugates a binary operation ga to a binary operation gb if for all x, y we have f (ga x y) = gb (f x) (f y). E.g., a MonoidHom semiconjugates (*) to (*).

Equations
theorem Function.Semiconj₂.eq {α : Type u_1} {β : Type u_2} {f : αβ} {ga : ααα} {gb : βββ} (h : Function.Semiconj₂ f ga gb) (x : α) (y : α) :
f (ga x y) = gb (f x) (f y)
theorem Function.Semiconj₂.comp_eq {α : Type u_1} {β : Type u_2} {f : αβ} {ga : ααα} {gb : βββ} (h : Function.Semiconj₂ f ga gb) :
theorem Function.Semiconj₂.id_left {α : Type u_1} (op : ααα) :
theorem Function.Semiconj₂.comp {α : Type u_3} {β : Type u_1} {γ : Type u_2} {f : αβ} {ga : ααα} {gb : βββ} {f' : βγ} {gc : γγγ} (hf' : Function.Semiconj₂ f' gb gc) (hf : Function.Semiconj₂ f ga gb) :
theorem Function.Semiconj₂.isAssociative_right {α : Type u_1} {β : Type u_2} {f : αβ} {ga : ααα} {gb : βββ} [inst : IsAssociative α ga] (h : Function.Semiconj₂ f ga gb) (h_surj : Function.Surjective f) :
theorem Function.Semiconj₂.isAssociative_left {α : Type u_2} {β : Type u_1} {f : αβ} {ga : ααα} {gb : βββ} [inst : IsAssociative β gb] (h : Function.Semiconj₂ f ga gb) (h_inj : Function.Injective f) :
theorem Function.Semiconj₂.isIdempotent_right {α : Type u_1} {β : Type u_2} {f : αβ} {ga : ααα} {gb : βββ} [inst : IsIdempotent α ga] (h : Function.Semiconj₂ f ga gb) (h_surj : Function.Surjective f) :
theorem Function.Semiconj₂.isIdempotent_left {α : Type u_2} {β : Type u_1} {f : αβ} {ga : ααα} {gb : βββ} [inst : IsIdempotent β gb] (h : Function.Semiconj₂ f ga gb) (h_inj : Function.Injective f) :