Documentation

Mathlib.MeasureTheory.Constructions.Projective

Projective measure families and projective limits #

A family of measures indexed by finite sets of ι is projective if, for finite sets J ⊆ I, the projection from ∀ i : I, α i to ∀ i : J, α i maps P I to P J. A measure μ is the projective limit of such a family of measures if for all I : Finset ι, the projection from ∀ i, α i to ∀ i : I, α i maps μ to P I.

Main definitions #

Main statements #

def MeasureTheory.IsProjectiveMeasureFamily {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] (P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)) :

A family of measures indexed by finite sets of ι is projective if, for finite sets J ⊆ I, the projection from ∀ i : I, α i to ∀ i : J, α i maps P I to P J.

Equations
Instances For
    theorem MeasureTheory.IsProjectiveMeasureFamily.eq_zero_of_isEmpty {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} [h : IsEmpty ((i : ι) → α i)] (hP : MeasureTheory.IsProjectiveMeasureFamily P) (I : Finset ι) :
    P I = 0
    theorem MeasureTheory.IsProjectiveMeasureFamily.measure_univ_eq_of_subset {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} {I J : Finset ι} (hP : MeasureTheory.IsProjectiveMeasureFamily P) (hJI : J I) :
    (P I) Set.univ = (P J) Set.univ

    Auxiliary lemma for measure_univ_eq.

    theorem MeasureTheory.IsProjectiveMeasureFamily.measure_univ_eq {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} (hP : MeasureTheory.IsProjectiveMeasureFamily P) (I J : Finset ι) :
    (P I) Set.univ = (P J) Set.univ
    theorem MeasureTheory.IsProjectiveMeasureFamily.congr_cylinder_of_subset {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} {I J : Finset ι} (hP : MeasureTheory.IsProjectiveMeasureFamily P) {S : Set ((i : { x : ι // x I }) → α i)} {T : Set ((i : { x : ι // x J }) → α i)} (hT : MeasurableSet T) (h_eq : MeasureTheory.cylinder I S = MeasureTheory.cylinder J T) (hJI : J I) :
    (P I) S = (P J) T
    theorem MeasureTheory.IsProjectiveMeasureFamily.congr_cylinder {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} {I J : Finset ι} (hP : MeasureTheory.IsProjectiveMeasureFamily P) {S : Set ((i : { x : ι // x I }) → α i)} {T : Set ((i : { x : ι // x J }) → α i)} (hS : MeasurableSet S) (hT : MeasurableSet T) (h_eq : MeasureTheory.cylinder I S = MeasureTheory.cylinder J T) :
    (P I) S = (P J) T
    def MeasureTheory.IsProjectiveLimit {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] (μ : MeasureTheory.Measure ((i : ι) → α i)) (P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)) :

    A measure μ is the projective limit of a family of measures indexed by finite sets of ι if for all I : Finset ι, the projection from ∀ i, α i to ∀ i : I, α i maps μ to P I.

    Equations
    Instances For
      theorem MeasureTheory.IsProjectiveLimit.measure_cylinder {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} {μ : MeasureTheory.Measure ((i : ι) → α i)} (h : MeasureTheory.IsProjectiveLimit μ P) (I : Finset ι) {s : Set ((i : { x : ι // x I }) → α i)} (hs : MeasurableSet s) :
      μ (MeasureTheory.cylinder I s) = (P I) s
      theorem MeasureTheory.IsProjectiveLimit.measure_univ_eq {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} {μ : MeasureTheory.Measure ((i : ι) → α i)} (hμ : MeasureTheory.IsProjectiveLimit μ P) (I : Finset ι) :
      μ Set.univ = (P I) Set.univ
      theorem MeasureTheory.IsProjectiveLimit.isFiniteMeasure {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} {μ : MeasureTheory.Measure ((i : ι) → α i)} [∀ (i : Finset ι), MeasureTheory.IsFiniteMeasure (P i)] (hμ : MeasureTheory.IsProjectiveLimit μ P) :
      theorem MeasureTheory.IsProjectiveLimit.isProbabilityMeasure {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} {μ : MeasureTheory.Measure ((i : ι) → α i)} [∀ (i : Finset ι), MeasureTheory.IsProbabilityMeasure (P i)] (hμ : MeasureTheory.IsProjectiveLimit μ P) :
      theorem MeasureTheory.IsProjectiveLimit.measure_univ_unique {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} {μ ν : MeasureTheory.Measure ((i : ι) → α i)} (hμ : MeasureTheory.IsProjectiveLimit μ P) (hν : MeasureTheory.IsProjectiveLimit ν P) :
      μ Set.univ = ν Set.univ
      theorem MeasureTheory.IsProjectiveLimit.unique {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} {μ ν : MeasureTheory.Measure ((i : ι) → α i)} [∀ (i : Finset ι), MeasureTheory.IsFiniteMeasure (P i)] (hμ : MeasureTheory.IsProjectiveLimit μ P) (hν : MeasureTheory.IsProjectiveLimit ν P) :
      μ = ν

      The projective limit of a family of finite measures is unique.