Documentation

Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL2

Conditional expectation in L2 #

This file contains one step of the construction of the conditional expectation, which is completed in MeasureTheory.Function.ConditionalExpectation.Basic. See that file for a description of the full process.

We build the conditional expectation of an function, as an element of . This is the orthogonal projection on the subspace of almost everywhere m-measurable functions.

Main definitions #

Implementation notes #

Most of the results in this file are valid for a complete real normed space F. However, some lemmas also use 𝕜 : RCLike:

noncomputable def MeasureTheory.condExpL2 {α : Type u_1} (E : Type u_2) (𝕜 : Type u_7) [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {m m0 : MeasurableSpace α} {μ : Measure α} (hm : m m0) :
(Lp E 2 μ) →L[𝕜] (lpMeas E 𝕜 m 2 μ)

Conditional expectation of a function in L2 with respect to a sigma-algebra

Equations
Instances For
    @[deprecated MeasureTheory.condExpL2 (since := "2025-01-21")]
    def MeasureTheory.condexpL2 {α : Type u_1} (E : Type u_2) (𝕜 : Type u_7) [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {m m0 : MeasurableSpace α} {μ : Measure α} (hm : m m0) :
    (Lp E 2 μ) →L[𝕜] (lpMeas E 𝕜 m 2 μ)

    Alias of MeasureTheory.condExpL2.


    Conditional expectation of a function in L2 with respect to a sigma-algebra

    Equations
    Instances For
      theorem MeasureTheory.aestronglyMeasurable_condExpL2 {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {m m0 : MeasurableSpace α} {μ : Measure α} (hm : m m0) (f : (Lp E 2 μ)) :
      AEStronglyMeasurable (↑((condExpL2 E 𝕜 hm) f)) μ
      @[deprecated MeasureTheory.aestronglyMeasurable_condExpL2 (since := "2025-01-24")]
      theorem MeasureTheory.aeStronglyMeasurable'_condExpL2 {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {m m0 : MeasurableSpace α} {μ : Measure α} (hm : m m0) (f : (Lp E 2 μ)) :
      AEStronglyMeasurable (↑((condExpL2 E 𝕜 hm) f)) μ

      Alias of MeasureTheory.aestronglyMeasurable_condExpL2.

      @[deprecated MeasureTheory.aestronglyMeasurable_condExpL2 (since := "2025-01-24")]
      theorem MeasureTheory.aeStronglyMeasurable'_condexpL2 {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {m m0 : MeasurableSpace α} {μ : Measure α} (hm : m m0) (f : (Lp E 2 μ)) :
      AEStronglyMeasurable (↑((condExpL2 E 𝕜 hm) f)) μ

      Alias of MeasureTheory.aestronglyMeasurable_condExpL2.

      theorem MeasureTheory.integrableOn_condExpL2_of_measure_ne_top {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} (hm : m m0) (hμs : μ s ) (f : (Lp E 2 μ)) :
      IntegrableOn (↑((condExpL2 E 𝕜 hm) f)) s μ
      @[deprecated MeasureTheory.integrableOn_condExpL2_of_measure_ne_top (since := "2025-01-21")]
      theorem MeasureTheory.integrableOn_condexpL2_of_measure_ne_top {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} (hm : m m0) (hμs : μ s ) (f : (Lp E 2 μ)) :
      IntegrableOn (↑((condExpL2 E 𝕜 hm) f)) s μ

      Alias of MeasureTheory.integrableOn_condExpL2_of_measure_ne_top.

      theorem MeasureTheory.integrable_condExpL2_of_isFiniteMeasure {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {m m0 : MeasurableSpace α} {μ : Measure α} (hm : m m0) [IsFiniteMeasure μ] {f : (Lp E 2 μ)} :
      Integrable (↑((condExpL2 E 𝕜 hm) f)) μ
      @[deprecated MeasureTheory.integrable_condExpL2_of_isFiniteMeasure (since := "2025-01-21")]
      theorem MeasureTheory.integrable_condexpL2_of_isFiniteMeasure {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {m m0 : MeasurableSpace α} {μ : Measure α} (hm : m m0) [IsFiniteMeasure μ] {f : (Lp E 2 μ)} :
      Integrable (↑((condExpL2 E 𝕜 hm) f)) μ

      Alias of MeasureTheory.integrable_condExpL2_of_isFiniteMeasure.

      theorem MeasureTheory.norm_condExpL2_le_one {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {m m0 : MeasurableSpace α} {μ : Measure α} (hm : m m0) :
      condExpL2 E 𝕜 hm 1
      @[deprecated MeasureTheory.norm_condExpL2_le_one (since := "2025-01-21")]
      theorem MeasureTheory.norm_condexpL2_le_one {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {m m0 : MeasurableSpace α} {μ : Measure α} (hm : m m0) :
      condExpL2 E 𝕜 hm 1

      Alias of MeasureTheory.norm_condExpL2_le_one.

      theorem MeasureTheory.norm_condExpL2_le {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {m m0 : MeasurableSpace α} {μ : Measure α} (hm : m m0) (f : (Lp E 2 μ)) :
      (condExpL2 E 𝕜 hm) f f
      @[deprecated MeasureTheory.norm_condExpL2_le (since := "2025-01-21")]
      theorem MeasureTheory.norm_condexpL2_le {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {m m0 : MeasurableSpace α} {μ : Measure α} (hm : m m0) (f : (Lp E 2 μ)) :
      (condExpL2 E 𝕜 hm) f f

      Alias of MeasureTheory.norm_condExpL2_le.

      theorem MeasureTheory.eLpNorm_condExpL2_le {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {m m0 : MeasurableSpace α} {μ : Measure α} (hm : m m0) (f : (Lp E 2 μ)) :
      eLpNorm (↑((condExpL2 E 𝕜 hm) f)) 2 μ eLpNorm (↑f) 2 μ
      @[deprecated MeasureTheory.eLpNorm_condExpL2_le (since := "2025-01-21")]
      theorem MeasureTheory.eLpNorm_condexpL2_le {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {m m0 : MeasurableSpace α} {μ : Measure α} (hm : m m0) (f : (Lp E 2 μ)) :
      eLpNorm (↑((condExpL2 E 𝕜 hm) f)) 2 μ eLpNorm (↑f) 2 μ

      Alias of MeasureTheory.eLpNorm_condExpL2_le.

      theorem MeasureTheory.norm_condExpL2_coe_le {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {m m0 : MeasurableSpace α} {μ : Measure α} (hm : m m0) (f : (Lp E 2 μ)) :
      ((condExpL2 E 𝕜 hm) f) f
      @[deprecated MeasureTheory.norm_condExpL2_coe_le (since := "2025-01-21")]
      theorem MeasureTheory.norm_condexpL2_coe_le {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {m m0 : MeasurableSpace α} {μ : Measure α} (hm : m m0) (f : (Lp E 2 μ)) :
      ((condExpL2 E 𝕜 hm) f) f

      Alias of MeasureTheory.norm_condExpL2_coe_le.

      theorem MeasureTheory.inner_condExpL2_left_eq_right {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {m m0 : MeasurableSpace α} {μ : Measure α} (hm : m m0) {f g : (Lp E 2 μ)} :
      inner (↑((condExpL2 E 𝕜 hm) f)) g = inner f ((condExpL2 E 𝕜 hm) g)
      @[deprecated MeasureTheory.inner_condExpL2_left_eq_right (since := "2025-01-21")]
      theorem MeasureTheory.inner_condexpL2_left_eq_right {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {m m0 : MeasurableSpace α} {μ : Measure α} (hm : m m0) {f g : (Lp E 2 μ)} :
      inner (↑((condExpL2 E 𝕜 hm) f)) g = inner f ((condExpL2 E 𝕜 hm) g)

      Alias of MeasureTheory.inner_condExpL2_left_eq_right.

      theorem MeasureTheory.condExpL2_indicator_of_measurable {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} (hm : m m0) (hs : MeasurableSet s) (hμs : μ s ) (c : E) :
      ((condExpL2 E 𝕜 hm) (indicatorConstLp 2 hμs c)) = indicatorConstLp 2 hμs c
      @[deprecated MeasureTheory.condExpL2_indicator_of_measurable (since := "2025-01-21")]
      theorem MeasureTheory.condexpL2_indicator_of_measurable {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} (hm : m m0) (hs : MeasurableSet s) (hμs : μ s ) (c : E) :
      ((condExpL2 E 𝕜 hm) (indicatorConstLp 2 hμs c)) = indicatorConstLp 2 hμs c

      Alias of MeasureTheory.condExpL2_indicator_of_measurable.

      theorem MeasureTheory.inner_condExpL2_eq_inner_fun {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {m m0 : MeasurableSpace α} {μ : Measure α} (hm : m m0) (f g : (Lp E 2 μ)) (hg : AEStronglyMeasurable (↑g) μ) :
      inner (↑((condExpL2 E 𝕜 hm) f)) g = inner f g
      @[deprecated MeasureTheory.inner_condExpL2_eq_inner_fun (since := "2025-01-21")]
      theorem MeasureTheory.inner_condexpL2_eq_inner_fun {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {m m0 : MeasurableSpace α} {μ : Measure α} (hm : m m0) (f g : (Lp E 2 μ)) (hg : AEStronglyMeasurable (↑g) μ) :
      inner (↑((condExpL2 E 𝕜 hm) f)) g = inner f g

      Alias of MeasureTheory.inner_condExpL2_eq_inner_fun.

      theorem MeasureTheory.integral_condExpL2_eq_of_fin_meas_real {α : Type u_1} {𝕜 : Type u_7} [RCLike 𝕜] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} {hm : m m0} (f : (Lp 𝕜 2 μ)) (hs : MeasurableSet s) (hμs : μ s ) :
      (x : α) in s, ((condExpL2 𝕜 𝕜 hm) f) x μ = (x : α) in s, f x μ
      @[deprecated MeasureTheory.integral_condExpL2_eq_of_fin_meas_real (since := "2025-01-21")]
      theorem MeasureTheory.integral_condexpL2_eq_of_fin_meas_real {α : Type u_1} {𝕜 : Type u_7} [RCLike 𝕜] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} {hm : m m0} (f : (Lp 𝕜 2 μ)) (hs : MeasurableSet s) (hμs : μ s ) :
      (x : α) in s, ((condExpL2 𝕜 𝕜 hm) f) x μ = (x : α) in s, f x μ

      Alias of MeasureTheory.integral_condExpL2_eq_of_fin_meas_real.

      theorem MeasureTheory.lintegral_nnnorm_condExpL2_le {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} {hm : m m0} (hs : MeasurableSet s) (hμs : μ s ) (f : (Lp 2 μ)) :
      ∫⁻ (x : α) in s, ((condExpL2 hm) f) x‖₊ μ ∫⁻ (x : α) in s, f x‖₊ μ
      @[deprecated MeasureTheory.lintegral_nnnorm_condExpL2_le (since := "2025-01-21")]
      theorem MeasureTheory.lintegral_nnnorm_condexpL2_le {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} {hm : m m0} (hs : MeasurableSet s) (hμs : μ s ) (f : (Lp 2 μ)) :
      ∫⁻ (x : α) in s, ((condExpL2 hm) f) x‖₊ μ ∫⁻ (x : α) in s, f x‖₊ μ

      Alias of MeasureTheory.lintegral_nnnorm_condExpL2_le.

      theorem MeasureTheory.condExpL2_ae_eq_zero_of_ae_eq_zero {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} {hm : m m0} (hs : MeasurableSet s) (hμs : μ s ) {f : (Lp 2 μ)} (hf : f =ᶠ[ae (μ.restrict s)] 0) :
      ((condExpL2 hm) f) =ᶠ[ae (μ.restrict s)] 0
      @[deprecated MeasureTheory.condExpL2_ae_eq_zero_of_ae_eq_zero (since := "2025-01-21")]
      theorem MeasureTheory.condexpL2_ae_eq_zero_of_ae_eq_zero {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} {hm : m m0} (hs : MeasurableSet s) (hμs : μ s ) {f : (Lp 2 μ)} (hf : f =ᶠ[ae (μ.restrict s)] 0) :
      ((condExpL2 hm) f) =ᶠ[ae (μ.restrict s)] 0

      Alias of MeasureTheory.condExpL2_ae_eq_zero_of_ae_eq_zero.

      theorem MeasureTheory.lintegral_nnnorm_condExpL2_indicator_le_real {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} {s t : Set α} {hm : m m0} (hs : MeasurableSet s) (hμs : μ s ) (ht : MeasurableSet t) (hμt : μ t ) :
      ∫⁻ (a : α) in t, ((condExpL2 hm) (indicatorConstLp 2 hs hμs 1)) a‖₊ μ μ (s t)
      @[deprecated MeasureTheory.lintegral_nnnorm_condExpL2_indicator_le_real (since := "2025-01-21")]
      theorem MeasureTheory.lintegral_nnnorm_condexpL2_indicator_le_real {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} {s t : Set α} {hm : m m0} (hs : MeasurableSet s) (hμs : μ s ) (ht : MeasurableSet t) (hμt : μ t ) :
      ∫⁻ (a : α) in t, ((condExpL2 hm) (indicatorConstLp 2 hs hμs 1)) a‖₊ μ μ (s t)

      Alias of MeasureTheory.lintegral_nnnorm_condExpL2_indicator_le_real.

      theorem MeasureTheory.condExpL2_const_inner {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {m m0 : MeasurableSpace α} {μ : Measure α} (hm : m m0) (f : (Lp E 2 μ)) (c : E) :
      ((condExpL2 𝕜 𝕜 hm) (MemLp.toLp (fun (a : α) => inner c (f a)) )) =ᶠ[ae μ] fun (a : α) => inner c (((condExpL2 E 𝕜 hm) f) a)

      condExpL2 commutes with taking inner products with constants. See the lemma condExpL2_comp_continuousLinearMap for a more general result about commuting with continuous linear maps.

      @[deprecated MeasureTheory.condExpL2_const_inner (since := "2025-01-21")]
      theorem MeasureTheory.condexpL2_const_inner {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {m m0 : MeasurableSpace α} {μ : Measure α} (hm : m m0) (f : (Lp E 2 μ)) (c : E) :
      ((condExpL2 𝕜 𝕜 hm) (MemLp.toLp (fun (a : α) => inner c (f a)) )) =ᶠ[ae μ] fun (a : α) => inner c (((condExpL2 E 𝕜 hm) f) a)

      Alias of MeasureTheory.condExpL2_const_inner.


      condExpL2 commutes with taking inner products with constants. See the lemma condExpL2_comp_continuousLinearMap for a more general result about commuting with continuous linear maps.

      theorem MeasureTheory.integral_condExpL2_eq {α : Type u_1} {E' : Type u_3} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E'] [InnerProductSpace 𝕜 E'] [CompleteSpace E'] [NormedSpace E'] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} (hm : m m0) (f : (Lp E' 2 μ)) (hs : MeasurableSet s) (hμs : μ s ) :
      (x : α) in s, ((condExpL2 E' 𝕜 hm) f) x μ = (x : α) in s, f x μ

      condExpL2 verifies the equality of integrals defining the conditional expectation.

      @[deprecated MeasureTheory.integral_condExpL2_eq (since := "2025-01-21")]
      theorem MeasureTheory.integral_condexpL2_eq {α : Type u_1} {E' : Type u_3} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E'] [InnerProductSpace 𝕜 E'] [CompleteSpace E'] [NormedSpace E'] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} (hm : m m0) (f : (Lp E' 2 μ)) (hs : MeasurableSet s) (hμs : μ s ) :
      (x : α) in s, ((condExpL2 E' 𝕜 hm) f) x μ = (x : α) in s, f x μ

      Alias of MeasureTheory.integral_condExpL2_eq.


      condExpL2 verifies the equality of integrals defining the conditional expectation.

      theorem MeasureTheory.condExpL2_comp_continuousLinearMap {α : Type u_1} {E' : Type u_3} (𝕜 : Type u_7) [RCLike 𝕜] [NormedAddCommGroup E'] [InnerProductSpace 𝕜 E'] [CompleteSpace E'] [NormedSpace E'] {m m0 : MeasurableSpace α} {μ : Measure α} {E'' : Type u_8} (𝕜' : Type u_9) [RCLike 𝕜'] [NormedAddCommGroup E''] [InnerProductSpace 𝕜' E''] [CompleteSpace E''] [NormedSpace E''] (hm : m m0) (T : E' →L[] E'') (f : (Lp E' 2 μ)) :
      ((condExpL2 E'' 𝕜' hm) (T.compLp f)) =ᶠ[ae μ] (T.compLp ((condExpL2 E' 𝕜 hm) f))
      @[deprecated MeasureTheory.condExpL2_comp_continuousLinearMap (since := "2025-01-21")]
      theorem MeasureTheory.condexpL2_comp_continuousLinearMap {α : Type u_1} {E' : Type u_3} (𝕜 : Type u_7) [RCLike 𝕜] [NormedAddCommGroup E'] [InnerProductSpace 𝕜 E'] [CompleteSpace E'] [NormedSpace E'] {m m0 : MeasurableSpace α} {μ : Measure α} {E'' : Type u_8} (𝕜' : Type u_9) [RCLike 𝕜'] [NormedAddCommGroup E''] [InnerProductSpace 𝕜' E''] [CompleteSpace E''] [NormedSpace E''] (hm : m m0) (T : E' →L[] E'') (f : (Lp E' 2 μ)) :
      ((condExpL2 E'' 𝕜' hm) (T.compLp f)) =ᶠ[ae μ] (T.compLp ((condExpL2 E' 𝕜 hm) f))

      Alias of MeasureTheory.condExpL2_comp_continuousLinearMap.

      theorem MeasureTheory.condExpL2_indicator_ae_eq_smul {α : Type u_1} {E' : Type u_3} (𝕜 : Type u_7) [RCLike 𝕜] [NormedAddCommGroup E'] [InnerProductSpace 𝕜 E'] [CompleteSpace E'] [NormedSpace E'] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} (hm : m m0) (hs : MeasurableSet s) (hμs : μ s ) (x : E') :
      ((condExpL2 E' 𝕜 hm) (indicatorConstLp 2 hs hμs x)) =ᶠ[ae μ] fun (a : α) => ((condExpL2 hm) (indicatorConstLp 2 hs hμs 1)) a x
      @[deprecated MeasureTheory.condExpL2_indicator_ae_eq_smul (since := "2025-01-21")]
      theorem MeasureTheory.condexpL2_indicator_ae_eq_smul {α : Type u_1} {E' : Type u_3} (𝕜 : Type u_7) [RCLike 𝕜] [NormedAddCommGroup E'] [InnerProductSpace 𝕜 E'] [CompleteSpace E'] [NormedSpace E'] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} (hm : m m0) (hs : MeasurableSet s) (hμs : μ s ) (x : E') :
      ((condExpL2 E' 𝕜 hm) (indicatorConstLp 2 hs hμs x)) =ᶠ[ae μ] fun (a : α) => ((condExpL2 hm) (indicatorConstLp 2 hs hμs 1)) a x

      Alias of MeasureTheory.condExpL2_indicator_ae_eq_smul.

      theorem MeasureTheory.condExpL2_indicator_eq_toSpanSingleton_comp {α : Type u_1} {E' : Type u_3} (𝕜 : Type u_7) [RCLike 𝕜] [NormedAddCommGroup E'] [InnerProductSpace 𝕜 E'] [CompleteSpace E'] [NormedSpace E'] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} (hm : m m0) (hs : MeasurableSet s) (hμs : μ s ) (x : E') :
      ((condExpL2 E' 𝕜 hm) (indicatorConstLp 2 hs hμs x)) = (ContinuousLinearMap.toSpanSingleton x).compLp ((condExpL2 hm) (indicatorConstLp 2 hs hμs 1))
      @[deprecated MeasureTheory.condExpL2_indicator_eq_toSpanSingleton_comp (since := "2025-01-21")]
      theorem MeasureTheory.condexpL2_indicator_eq_toSpanSingleton_comp {α : Type u_1} {E' : Type u_3} (𝕜 : Type u_7) [RCLike 𝕜] [NormedAddCommGroup E'] [InnerProductSpace 𝕜 E'] [CompleteSpace E'] [NormedSpace E'] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} (hm : m m0) (hs : MeasurableSet s) (hμs : μ s ) (x : E') :
      ((condExpL2 E' 𝕜 hm) (indicatorConstLp 2 hs hμs x)) = (ContinuousLinearMap.toSpanSingleton x).compLp ((condExpL2 hm) (indicatorConstLp 2 hs hμs 1))

      Alias of MeasureTheory.condExpL2_indicator_eq_toSpanSingleton_comp.

      theorem MeasureTheory.setLIntegral_nnnorm_condExpL2_indicator_le {α : Type u_1} {E' : Type u_3} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E'] [InnerProductSpace 𝕜 E'] [CompleteSpace E'] [NormedSpace E'] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} (hm : m m0) (hs : MeasurableSet s) (hμs : μ s ) (x : E') {t : Set α} (ht : MeasurableSet t) (hμt : μ t ) :
      ∫⁻ (a : α) in t, ((condExpL2 E' 𝕜 hm) (indicatorConstLp 2 hs hμs x)) a‖₊ μ μ (s t) * x‖₊
      @[deprecated MeasureTheory.setLIntegral_nnnorm_condExpL2_indicator_le (since := "2025-01-21")]
      theorem MeasureTheory.setLIntegral_nnnorm_condexpL2_indicator_le {α : Type u_1} {E' : Type u_3} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E'] [InnerProductSpace 𝕜 E'] [CompleteSpace E'] [NormedSpace E'] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} (hm : m m0) (hs : MeasurableSet s) (hμs : μ s ) (x : E') {t : Set α} (ht : MeasurableSet t) (hμt : μ t ) :
      ∫⁻ (a : α) in t, ((condExpL2 E' 𝕜 hm) (indicatorConstLp 2 hs hμs x)) a‖₊ μ μ (s t) * x‖₊

      Alias of MeasureTheory.setLIntegral_nnnorm_condExpL2_indicator_le.

      theorem MeasureTheory.lintegral_nnnorm_condExpL2_indicator_le {α : Type u_1} {E' : Type u_3} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E'] [InnerProductSpace 𝕜 E'] [CompleteSpace E'] [NormedSpace E'] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} (hm : m m0) (hs : MeasurableSet s) (hμs : μ s ) (x : E') [SigmaFinite (μ.trim hm)] :
      ∫⁻ (a : α), ((condExpL2 E' 𝕜 hm) (indicatorConstLp 2 hs hμs x)) a‖₊ μ μ s * x‖₊
      @[deprecated MeasureTheory.lintegral_nnnorm_condExpL2_indicator_le (since := "2025-01-21")]
      theorem MeasureTheory.lintegral_nnnorm_condexpL2_indicator_le {α : Type u_1} {E' : Type u_3} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E'] [InnerProductSpace 𝕜 E'] [CompleteSpace E'] [NormedSpace E'] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} (hm : m m0) (hs : MeasurableSet s) (hμs : μ s ) (x : E') [SigmaFinite (μ.trim hm)] :
      ∫⁻ (a : α), ((condExpL2 E' 𝕜 hm) (indicatorConstLp 2 hs hμs x)) a‖₊ μ μ s * x‖₊

      Alias of MeasureTheory.lintegral_nnnorm_condExpL2_indicator_le.

      theorem MeasureTheory.integrable_condExpL2_indicator {α : Type u_1} {E' : Type u_3} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E'] [InnerProductSpace 𝕜 E'] [CompleteSpace E'] [NormedSpace E'] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} (hm : m m0) [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (hμs : μ s ) (x : E') :
      Integrable (↑((condExpL2 E' 𝕜 hm) (indicatorConstLp 2 hs hμs x))) μ

      If the measure μ.trim hm is sigma-finite, then the conditional expectation of a measurable set with finite measure is integrable.

      @[deprecated MeasureTheory.integrable_condExpL2_indicator (since := "2025-01-21")]
      theorem MeasureTheory.integrable_condexpL2_indicator {α : Type u_1} {E' : Type u_3} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E'] [InnerProductSpace 𝕜 E'] [CompleteSpace E'] [NormedSpace E'] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} (hm : m m0) [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (hμs : μ s ) (x : E') :
      Integrable (↑((condExpL2 E' 𝕜 hm) (indicatorConstLp 2 hs hμs x))) μ

      Alias of MeasureTheory.integrable_condExpL2_indicator.


      If the measure μ.trim hm is sigma-finite, then the conditional expectation of a measurable set with finite measure is integrable.

      noncomputable def MeasureTheory.condExpIndSMul {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] (hm : m m0) (hs : MeasurableSet s) (hμs : μ s ) (x : G) :
      (Lp G 2 μ)

      Conditional expectation of the indicator of a measurable set with finite measure, in L2.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[deprecated MeasureTheory.condExpIndSMul (since := "2025-01-21")]
        def MeasureTheory.condexpIndSMul {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] (hm : m m0) (hs : MeasurableSet s) (hμs : μ s ) (x : G) :
        (Lp G 2 μ)

        Alias of MeasureTheory.condExpIndSMul.


        Conditional expectation of the indicator of a measurable set with finite measure, in L2.

        Equations
        Instances For
          theorem MeasureTheory.aestronglyMeasurable_condExpIndSMul {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] (hm : m m0) (hs : MeasurableSet s) (hμs : μ s ) (x : G) :
          AEStronglyMeasurable (↑(condExpIndSMul hm hs hμs x)) μ
          @[deprecated MeasureTheory.aestronglyMeasurable_condExpIndSMul (since := "2025-01-24")]
          theorem MeasureTheory.aeStronglyMeasurable'_condExpIndSMul {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] (hm : m m0) (hs : MeasurableSet s) (hμs : μ s ) (x : G) :
          AEStronglyMeasurable (↑(condExpIndSMul hm hs hμs x)) μ

          Alias of MeasureTheory.aestronglyMeasurable_condExpIndSMul.

          @[deprecated MeasureTheory.aestronglyMeasurable_condExpIndSMul (since := "2025-01-21")]
          theorem MeasureTheory.aestronglyMeasurable'_condexpIndSMul {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] (hm : m m0) (hs : MeasurableSet s) (hμs : μ s ) (x : G) :
          AEStronglyMeasurable (↑(condExpIndSMul hm hs hμs x)) μ

          Alias of MeasureTheory.aestronglyMeasurable_condExpIndSMul.

          theorem MeasureTheory.condExpIndSMul_add {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} (hs : MeasurableSet s) (hμs : μ s ) (x y : G) :
          condExpIndSMul hm hs hμs (x + y) = condExpIndSMul hm hs hμs x + condExpIndSMul hm hs hμs y
          @[deprecated MeasureTheory.condExpIndSMul_add (since := "2025-01-21")]
          theorem MeasureTheory.condexpIndSMul_add {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} (hs : MeasurableSet s) (hμs : μ s ) (x y : G) :
          condExpIndSMul hm hs hμs (x + y) = condExpIndSMul hm hs hμs x + condExpIndSMul hm hs hμs y

          Alias of MeasureTheory.condExpIndSMul_add.

          theorem MeasureTheory.condExpIndSMul_smul {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} (hs : MeasurableSet s) (hμs : μ s ) (c : ) (x : G) :
          condExpIndSMul hm hs hμs (c x) = c condExpIndSMul hm hs hμs x
          @[deprecated MeasureTheory.condExpIndSMul_smul (since := "2025-01-21")]
          theorem MeasureTheory.condexpIndSMul_smul {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] {hm : m m0} (hs : MeasurableSet s) (hμs : μ s ) (c : ) (x : G) :
          condExpIndSMul hm hs hμs (c x) = c condExpIndSMul hm hs hμs x

          Alias of MeasureTheory.condExpIndSMul_smul.

          theorem MeasureTheory.condExpIndSMul_smul' {α : Type u_1} {F : Type u_4} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} {hm : m m0} [NormedSpace F] [SMulCommClass 𝕜 F] (hs : MeasurableSet s) (hμs : μ s ) (c : 𝕜) (x : F) :
          condExpIndSMul hm hs hμs (c x) = c condExpIndSMul hm hs hμs x
          @[deprecated MeasureTheory.condExpIndSMul_smul' (since := "2025-01-21")]
          theorem MeasureTheory.condexpIndSMul_smul' {α : Type u_1} {F : Type u_4} {𝕜 : Type u_7} [RCLike 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} {hm : m m0} [NormedSpace F] [SMulCommClass 𝕜 F] (hs : MeasurableSet s) (hμs : μ s ) (c : 𝕜) (x : F) :
          condExpIndSMul hm hs hμs (c x) = c condExpIndSMul hm hs hμs x

          Alias of MeasureTheory.condExpIndSMul_smul'.

          theorem MeasureTheory.condExpIndSMul_ae_eq_smul {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] (hm : m m0) (hs : MeasurableSet s) (hμs : μ s ) (x : G) :
          (condExpIndSMul hm hs hμs x) =ᶠ[ae μ] fun (a : α) => ((condExpL2 hm) (indicatorConstLp 2 hs hμs 1)) a x
          @[deprecated MeasureTheory.condExpIndSMul_ae_eq_smul (since := "2025-01-21")]
          theorem MeasureTheory.condexpIndSMul_ae_eq_smul {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] (hm : m m0) (hs : MeasurableSet s) (hμs : μ s ) (x : G) :
          (condExpIndSMul hm hs hμs x) =ᶠ[ae μ] fun (a : α) => ((condExpL2 hm) (indicatorConstLp 2 hs hμs 1)) a x

          Alias of MeasureTheory.condExpIndSMul_ae_eq_smul.

          theorem MeasureTheory.setLIntegral_nnnorm_condExpIndSMul_le {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] (hm : m m0) (hs : MeasurableSet s) (hμs : μ s ) (x : G) {t : Set α} (ht : MeasurableSet t) (hμt : μ t ) :
          ∫⁻ (a : α) in t, (condExpIndSMul hm hs hμs x) a‖₊ μ μ (s t) * x‖₊
          @[deprecated MeasureTheory.setLIntegral_nnnorm_condExpIndSMul_le (since := "2025-01-21")]
          theorem MeasureTheory.setLIntegral_nnnorm_condexpIndSMul_le {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] (hm : m m0) (hs : MeasurableSet s) (hμs : μ s ) (x : G) {t : Set α} (ht : MeasurableSet t) (hμt : μ t ) :
          ∫⁻ (a : α) in t, (condExpIndSMul hm hs hμs x) a‖₊ μ μ (s t) * x‖₊

          Alias of MeasureTheory.setLIntegral_nnnorm_condExpIndSMul_le.

          theorem MeasureTheory.lintegral_nnnorm_condExpIndSMul_le {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] (hm : m m0) (hs : MeasurableSet s) (hμs : μ s ) (x : G) [SigmaFinite (μ.trim hm)] :
          ∫⁻ (a : α), (condExpIndSMul hm hs hμs x) a‖₊ μ μ s * x‖₊
          @[deprecated MeasureTheory.lintegral_nnnorm_condExpIndSMul_le (since := "2025-01-21")]
          theorem MeasureTheory.lintegral_nnnorm_condexpIndSMul_le {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] (hm : m m0) (hs : MeasurableSet s) (hμs : μ s ) (x : G) [SigmaFinite (μ.trim hm)] :
          ∫⁻ (a : α), (condExpIndSMul hm hs hμs x) a‖₊ μ μ s * x‖₊

          Alias of MeasureTheory.lintegral_nnnorm_condExpIndSMul_le.

          theorem MeasureTheory.integrable_condExpIndSMul {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] (hm : m m0) [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (hμs : μ s ) (x : G) :
          Integrable (↑(condExpIndSMul hm hs hμs x)) μ

          If the measure μ.trim hm is sigma-finite, then the conditional expectation of a measurable set with finite measure is integrable.

          @[deprecated MeasureTheory.integrable_condExpIndSMul (since := "2025-01-21")]
          theorem MeasureTheory.integrable_condexpIndSMul {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [NormedSpace G] (hm : m m0) [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (hμs : μ s ) (x : G) :
          Integrable (↑(condExpIndSMul hm hs hμs x)) μ

          Alias of MeasureTheory.integrable_condExpIndSMul.


          If the measure μ.trim hm is sigma-finite, then the conditional expectation of a measurable set with finite measure is integrable.

          theorem MeasureTheory.condExpIndSMul_empty {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} [NormedSpace G] {hm : m m0} {x : G} :
          condExpIndSMul hm x = 0
          @[deprecated MeasureTheory.condExpIndSMul_empty (since := "2025-01-21")]
          theorem MeasureTheory.condexpIndSMul_empty {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m m0 : MeasurableSpace α} {μ : Measure α} [NormedSpace G] {hm : m m0} {x : G} :
          condExpIndSMul hm x = 0

          Alias of MeasureTheory.condExpIndSMul_empty.

          theorem MeasureTheory.setIntegral_condExpL2_indicator {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} {s t : Set α} {hm : m m0} (hs : MeasurableSet s) (ht : MeasurableSet t) (hμs : μ s ) (hμt : μ t ) :
          (x : α) in s, ((condExpL2 hm) (indicatorConstLp 2 ht hμt 1)) x μ = (μ (t s)).toReal
          @[deprecated MeasureTheory.setIntegral_condExpL2_indicator (since := "2025-01-21")]
          theorem MeasureTheory.setIntegral_condexpL2_indicator {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} {s t : Set α} {hm : m m0} (hs : MeasurableSet s) (ht : MeasurableSet t) (hμs : μ s ) (hμt : μ t ) :
          (x : α) in s, ((condExpL2 hm) (indicatorConstLp 2 ht hμt 1)) x μ = (μ (t s)).toReal

          Alias of MeasureTheory.setIntegral_condExpL2_indicator.

          theorem MeasureTheory.setIntegral_condExpIndSMul {α : Type u_1} {G' : Type u_6} [NormedAddCommGroup G'] [NormedSpace G'] [CompleteSpace G'] {m m0 : MeasurableSpace α} {μ : Measure α} {s t : Set α} {hm : m m0} (hs : MeasurableSet s) (ht : MeasurableSet t) (hμs : μ s ) (hμt : μ t ) (x : G') :
          (a : α) in s, (condExpIndSMul hm ht hμt x) a μ = (μ (t s)).toReal x
          @[deprecated MeasureTheory.setIntegral_condExpIndSMul (since := "2025-01-21")]
          theorem MeasureTheory.setIntegral_condexpIndSMul {α : Type u_1} {G' : Type u_6} [NormedAddCommGroup G'] [NormedSpace G'] [CompleteSpace G'] {m m0 : MeasurableSpace α} {μ : Measure α} {s t : Set α} {hm : m m0} (hs : MeasurableSet s) (ht : MeasurableSet t) (hμs : μ s ) (hμt : μ t ) (x : G') :
          (a : α) in s, (condExpIndSMul hm ht hμt x) a μ = (μ (t s)).toReal x

          Alias of MeasureTheory.setIntegral_condExpIndSMul.

          theorem MeasureTheory.condExpL2_indicator_nonneg {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} (hm : m m0) (hs : MeasurableSet s) (hμs : μ s ) [SigmaFinite (μ.trim hm)] :
          0 ≤ᶠ[ae μ] ((condExpL2 hm) (indicatorConstLp 2 hs hμs 1))
          @[deprecated MeasureTheory.condExpL2_indicator_nonneg (since := "2025-01-21")]
          theorem MeasureTheory.condexpL2_indicator_nonneg {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} (hm : m m0) (hs : MeasurableSet s) (hμs : μ s ) [SigmaFinite (μ.trim hm)] :
          0 ≤ᶠ[ae μ] ((condExpL2 hm) (indicatorConstLp 2 hs hμs 1))

          Alias of MeasureTheory.condExpL2_indicator_nonneg.

          theorem MeasureTheory.condExpIndSMul_nonneg {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} {hm : m m0} {E : Type u_10} [NormedLatticeAddCommGroup E] [NormedSpace E] [OrderedSMul E] [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (hμs : μ s ) (x : E) (hx : 0 x) :
          0 ≤ᶠ[ae μ] (condExpIndSMul hm hs hμs x)
          @[deprecated MeasureTheory.condExpIndSMul_nonneg (since := "2025-01-21")]
          theorem MeasureTheory.condexpIndSMul_nonneg {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} {hm : m m0} {E : Type u_10} [NormedLatticeAddCommGroup E] [NormedSpace E] [OrderedSMul E] [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) (hμs : μ s ) (x : E) (hx : 0 x) :
          0 ≤ᶠ[ae μ] (condExpIndSMul hm hs hμs x)

          Alias of MeasureTheory.condExpIndSMul_nonneg.