Documentation

Mathlib.MeasureTheory.Function.ConditionalLExpectation

Conditional Lebesgue expectation #

We define the conditional expectation of a ℝ≥0∞-valued function using the Lebesgue integral. Given a measure P : Measure[mΩ₀] Ω and a sub-σ-algebra of mΩ₀ (meaning hm : mΩ ≤ mΩ₀) and a function X : Ω → ℝ≥0∞, if P.trim hm is σ-finite, then the conditional (Lebesgue) expectation P⁻[X|mΩ] of X is the -measurable function such that for all -measurable sets s, ∫⁻ ω in s, P⁻[X|mΩ] ω ∂P = ∫⁻ ω in s, X ω ∂P (see setLIntegral_condLExp). This is unique up to P-ae equality (see ae_eq_condLExp).

Main definitions #

Notation #

For a measure P : Measure[mΩ₀] Ω, and another mΩ : MeasurableSpace Ω, we define the notation

Design decisions #

P⁻[X|mΩ] is assigned the junk value 0 when either ¬ mΩ ≤ mΩ₀ ( is not a sub-σ-algebra) or h : mΩ ≤ mΩ₀ but ¬ SigmaFinite (P.trim hm) (the latter always holds when P is a probability measure). When both these hold, in some sense the "user definition" of P⁻[X|mΩ] should be considered "the" measurable function which satisfies setLIntegral_condLExp (which is proven unique up to P-ae measurable equality in ae_eq_condLExp). The actual definition is just used to show existence. However for (potential) convenience the actual definition assigns P⁻[X|mΩ] := X in the case when X is -measurable (which can be invoked using condLExp_eq_self).

To do #

theorem MeasureTheory.condLExp_def {Ω : Type u_2} {mΩ₀ : MeasurableSpace Ω} ( : MeasurableSpace Ω) (P : Measure Ω) (X : ΩENNReal) :
P⁻[X|] = if hm : mΩ₀ then if SigmaFinite (P.trim hm) then if Measurable X then X else ((P.withDensity X).trim hm).rnDeriv (P.trim hm) else 0 else 0
@[irreducible]
noncomputable def MeasureTheory.condLExp {Ω : Type u_2} {mΩ₀ : MeasurableSpace Ω} ( : MeasurableSpace Ω) (P : Measure Ω) (X : ΩENNReal) :
ΩENNReal

Conditional (Lebesgue) expectation of a function, with notation P⁻[X|mΩ].

It is defined as 0 if either ¬ mΩ ≤ mΩ₀ or hm : mΩ ≤ mΩ₀ but ¬ SigmaFinite (P.trim hm).

One should typically not use the definition directly.

Equations
Instances For

    Conditional (Lebesgue) expectation of a function, with notation P⁻[X|mΩ].

    It is defined as 0 if either ¬ mΩ ≤ mΩ₀ or hm : mΩ ≤ mΩ₀ but ¬ SigmaFinite (P.trim hm).

    One should typically not use the definition directly.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      Unexpander for μ⁻[f|m] notation.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem MeasureTheory.condLExp_of_not_le {Ω : Type u_1} {mΩ₀ : MeasurableSpace Ω} {P : Measure Ω} {X : ΩENNReal} (hm_not : ¬ mΩ₀) :
        P⁻[X|] = 0
        theorem MeasureTheory.condLExp_of_not_sigmaFinite {Ω : Type u_1} {mΩ₀ : MeasurableSpace Ω} {P : Measure Ω} {X : ΩENNReal} (hm : mΩ₀) (hμm_not : ¬SigmaFinite (P.trim hm)) :
        P⁻[X|] = 0
        theorem MeasureTheory.condLExp_eq_self {Ω : Type u_1} {mΩ₀ : MeasurableSpace Ω} {X : ΩENNReal} (hm : mΩ₀) (P : Measure Ω) [ : SigmaFinite (P.trim hm)] (hX : Measurable X) :
        P⁻[X|] = X
        theorem MeasureTheory.condLExp_of_not_sub_sigma_measurable {Ω : Type u_1} {mΩ₀ : MeasurableSpace Ω} (hm : mΩ₀) (P : Measure Ω) [ : SigmaFinite (P.trim hm)] {X : ΩENNReal} (hX : ¬Measurable X) :
        P⁻[X|] = ((P.withDensity X).trim hm).rnDeriv (P.trim hm)
        theorem MeasureTheory.measurable_condLExp {Ω : Type u_1} {mΩ₀ : MeasurableSpace Ω} ( : MeasurableSpace Ω) (P : Measure Ω) (X : ΩENNReal) :
        theorem MeasureTheory.measurable_condLExp' {Ω : Type u_1} {mΩ₀ : MeasurableSpace Ω} ( : MeasurableSpace Ω) (P : Measure Ω) (X : ΩENNReal) :
        theorem MeasureTheory.setLIntegral_condLExp {Ω : Type u_1} {mΩ₀ : MeasurableSpace Ω} (hm : mΩ₀) (P : Measure Ω) [ : SigmaFinite (P.trim hm)] (X : ΩENNReal) {s : Set Ω} (hs : MeasurableSet s) :
        ∫⁻ (ω : Ω) in s, P⁻[X|] ω P = ∫⁻ (ω : Ω) in s, X ω P

        The (Lebesgue) integral of the conditional (Lebesgue) expectation P⁻[X|mΩ] over an -measurable set is equal to the integral of X on that set.

        theorem MeasureTheory.setLIntegral_condLExp_trim {Ω : Type u_1} {mΩ₀ : MeasurableSpace Ω} (hm : mΩ₀) (P : Measure Ω) [ : SigmaFinite (P.trim hm)] (X : ΩENNReal) {s : Set Ω} (hs : MeasurableSet s) :
        ∫⁻ (ω : Ω) in s, P⁻[X|] ω P.trim hm = ∫⁻ (ω : Ω) in s, X ω P
        theorem MeasureTheory.lintegral_condLExp {Ω : Type u_1} {mΩ₀ : MeasurableSpace Ω} (hm : mΩ₀) (P : Measure Ω) [ : SigmaFinite (P.trim hm)] (X : ΩENNReal) :
        ∫⁻ (ω : Ω), P⁻[X|] ω P = ∫⁻ (ω : Ω), X ω P
        theorem MeasureTheory.ae_eq_condLExp₀ {Ω : Type u_1} {mΩ₀ : MeasurableSpace Ω} {Y : ΩENNReal} (hm : mΩ₀) {P : Measure Ω} [ : SigmaFinite (P.trim hm)] (X : ΩENNReal) (hY : AEMeasurable Y (P.trim hm)) (hXY : ∀ (s : Set Ω), MeasurableSet s∫⁻ (ω : Ω) in s, Y ω P = ∫⁻ (ω : Ω) in s, X ω P) :
        Y =ᶠ[ae P] P⁻[X|]
        theorem MeasureTheory.ae_eq_condLExp {Ω : Type u_1} {mΩ₀ : MeasurableSpace Ω} {Y : ΩENNReal} (hm : mΩ₀) (P : Measure Ω) [ : SigmaFinite (P.trim hm)] (X : ΩENNReal) (hY : Measurable Y) (hXY : ∀ (s : Set Ω), MeasurableSet s∫⁻ (ω : Ω) in s, Y ω P = ∫⁻ (ω : Ω) in s, X ω P) :
        Y =ᶠ[ae P] P⁻[X|]
        theorem MeasureTheory.condLExp_const {Ω : Type u_1} {mΩ₀ : MeasurableSpace Ω} (hm : mΩ₀) (P : Measure Ω) [ : SigmaFinite (P.trim hm)] (c : ENNReal) :
        P⁻[fun (x : Ω) => c|] = fun (x : Ω) => c
        theorem MeasureTheory.condLExp_congr_ae {Ω : Type u_1} {mΩ₀ : MeasurableSpace Ω} {P : Measure Ω} {X Y : ΩENNReal} (hXY : X =ᶠ[ae P] Y) :
        P⁻[X|] =ᶠ[ae P] P⁻[Y|]
        theorem MeasureTheory.condLExp_congr_ae_trim {Ω : Type u_1} {mΩ₀ : MeasurableSpace Ω} (hm : mΩ₀) {P : Measure Ω} {X Y : ΩENNReal} (hXY : X =ᶠ[ae P] Y) :
        P⁻[X|] =ᶠ[ae (P.trim hm)] P⁻[Y|]
        theorem MeasureTheory.condLExp_bot' {Ω : Type u_1} {mΩ₀ : MeasurableSpace Ω} (P : Measure Ω) [NeZero P] (X : ΩENNReal) :
        P⁻[X|] = fun (x : Ω) => (P Set.univ)⁻¹ ∫⁻ (ω : Ω), X ω P
        theorem MeasureTheory.condLExp_bot_ae_eq {Ω : Type u_1} {mΩ₀ : MeasurableSpace Ω} (P : Measure Ω) (X : ΩENNReal) :
        P⁻[X|] =ᶠ[ae P] fun (x : Ω) => (P Set.univ)⁻¹ ∫⁻ (ω : Ω), X ω P
        theorem MeasureTheory.condLExp_bot {Ω : Type u_1} {mΩ₀ : MeasurableSpace Ω} (P : Measure Ω) [IsProbabilityMeasure P] (X : ΩENNReal) :
        P⁻[X|] = fun (x : Ω) => ∫⁻ (ω : Ω), X ω P
        theorem MeasureTheory.condLExp_mono {Ω : Type u_1} {mΩ₀ : MeasurableSpace Ω} {P : Measure Ω} {X Y : ΩENNReal} (hXY : X ≤ᶠ[ae P] Y) :
        theorem MeasureTheory.condLExp_add_le {Ω : Type u_1} {mΩ₀ : MeasurableSpace Ω} {P : Measure Ω} (X Y : ΩENNReal) :
        P⁻[X|] + P⁻[Y|] ≤ᶠ[ae P] P⁻[X + Y|]
        theorem MeasureTheory.condLExp_add_left {Ω : Type u_1} {mΩ₀ : MeasurableSpace Ω} {P : Measure Ω} {X : ΩENNReal} (Y : ΩENNReal) (hX : AEMeasurable X P) :
        P⁻[X + Y|] =ᶠ[ae P] P⁻[X|] + P⁻[Y|]
        theorem MeasureTheory.condLExp_add_right {Ω : Type u_1} {mΩ₀ : MeasurableSpace Ω} {P : Measure Ω} (X : ΩENNReal) {Y : ΩENNReal} (hY : AEMeasurable Y P) :
        P⁻[X + Y|] =ᶠ[ae P] P⁻[X|] + P⁻[Y|]
        theorem MeasureTheory.condLExp_smul {Ω : Type u_1} {mΩ₀ : MeasurableSpace Ω} {P : Measure Ω} (X : ΩENNReal) (hX : AEMeasurable X P) (c : ENNReal) :
        P⁻[c X|] =ᶠ[ae P] c P⁻[X|]
        theorem MeasureTheory.condLExp_smul_le {Ω : Type u_1} {mΩ₀ : MeasurableSpace Ω} {P : Measure Ω} (X : ΩENNReal) {c : ENNReal} :
        c P⁻[X|] ≤ᶠ[ae P] P⁻[c X|]
        theorem MeasureTheory.condLExp_smul' {Ω : Type u_1} {mΩ₀ : MeasurableSpace Ω} {P : Measure Ω} (X : ΩENNReal) {c : ENNReal} (hc : c ) :
        P⁻[c X|] =ᶠ[ae P] c P⁻[X|]