Documentation

Mathlib.MeasureTheory.Function.JacobianOneDim

Change of variable formulas for integrals in dimension 1 #

We record in this file versions of the general change of variables formula in integrals for functions from R to . This makes it possible to replace the determinant of the Fréchet derivative with the one-dimensional derivative.

See also Mathlib.MeasureTheory.Integral.IntervalIntegral.IntegrationByParts for versions of the change of variables formula in dimension 1 for non-monotone functions, formulated with the interval integral and with stronger requirements on the integrand.

theorem MeasureTheory.lintegral_image_eq_lintegral_abs_deriv_mul {s : Set } {f f' : } (hs : MeasurableSet s) (hf' : xs, HasDerivWithinAt f (f' x) s x) (hf : Set.InjOn f s) (g : ENNReal) :
∫⁻ (x : ) in f '' s, g x = ∫⁻ (x : ) in s, ENNReal.ofReal |f' x| * g (f x)

Integrability in the change of variable formula for differentiable functions (one-variable version): if a function f is injective and differentiable on a measurable set s ⊆ ℝ, then the Lebesgue integral of a function g : ℝ → ℝ≥0∞ on f '' s coincides with the Lebesgue integral of |(f' x)| * g ∘ f on s.

theorem MeasureTheory.integrableOn_image_iff_integrableOn_abs_deriv_smul {F : Type u_1} [NormedAddCommGroup F] [NormedSpace F] {s : Set } {f f' : } (hs : MeasurableSet s) (hf' : xs, HasDerivWithinAt f (f' x) s x) (hf : Set.InjOn f s) (g : F) :
IntegrableOn g (f '' s) volume IntegrableOn (fun (x : ) => |f' x| g (f x)) s volume

Integrability in the change of variable formula for differentiable functions (one-variable version): if a function f is injective and differentiable on a measurable set s ⊆ ℝ, then a function g : ℝ → F is integrable on f '' s if and only if |(f' x)| • g ∘ f is integrable on s.

theorem MeasureTheory.integral_image_eq_integral_abs_deriv_smul {F : Type u_1} [NormedAddCommGroup F] [NormedSpace F] {s : Set } {f f' : } (hs : MeasurableSet s) (hf' : xs, HasDerivWithinAt f (f' x) s x) (hf : Set.InjOn f s) (g : F) :
(x : ) in f '' s, g x = (x : ) in s, |f' x| g (f x)

Change of variable formula for differentiable functions (one-variable version): if a function f is injective and differentiable on a measurable set s ⊆ ℝ, then the Bochner integral of a function g : ℝ → F on f '' s coincides with the integral of |(f' x)| • g ∘ f on s.

theorem MeasurableEmbedding.withDensity_ofReal_comap_apply_eq_integral_abs_deriv_mul {f : } (hf : MeasurableEmbedding f) {s : Set } (hs : MeasurableSet s) {g : } (hg : ∀ᵐ (x : ), x f '' s0 g x) (hf_int : MeasureTheory.IntegrableOn g (f '' s) MeasureTheory.volume) {f' : } (hf' : xs, HasDerivWithinAt f (f' x) s x) :
theorem MeasurableEquiv.withDensity_ofReal_map_symm_apply_eq_integral_abs_deriv_mul (f : ≃ᵐ ) {s : Set } (hs : MeasurableSet s) {g : } (hg : ∀ᵐ (x : ), x f '' s0 g x) (hf_int : MeasureTheory.IntegrableOn g (f '' s) MeasureTheory.volume) {f' : } (hf' : xs, HasDerivWithinAt (⇑f) (f' x) s x) :