Documentation

Mathlib.MeasureTheory.Function.LpOrder

Order related properties of Lp spaces #

Results #

TODO #

theorem MeasureTheory.Lp.coeFn_le {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {μ : Measure α} {p : ENNReal} [NormedLatticeAddCommGroup E] (f g : (Lp E p μ)) :
f ≤ᶠ[ae μ] g f g
theorem MeasureTheory.Lp.coeFn_nonneg {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {μ : Measure α} {p : ENNReal} [NormedLatticeAddCommGroup E] (f : (Lp E p μ)) :
0 ≤ᶠ[ae μ] f 0 f
instance MeasureTheory.Lp.instAddLeftMono {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {μ : Measure α} {p : ENNReal} [NormedLatticeAddCommGroup E] :
AddLeftMono (Lp E p μ)
theorem MeasureTheory.MemLp.sup {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {μ : Measure α} {p : ENNReal} [NormedLatticeAddCommGroup E] {f g : αE} (hf : MemLp f p μ) (hg : MemLp g p μ) :
MemLp (f g) p μ
@[deprecated MeasureTheory.MemLp.sup (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.sup {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {μ : Measure α} {p : ENNReal} [NormedLatticeAddCommGroup E] {f g : αE} (hf : MemLp f p μ) (hg : MemLp g p μ) :
MemLp (f g) p μ

Alias of MeasureTheory.MemLp.sup.

theorem MeasureTheory.MemLp.inf {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {μ : Measure α} {p : ENNReal} [NormedLatticeAddCommGroup E] {f g : αE} (hf : MemLp f p μ) (hg : MemLp g p μ) :
MemLp (f g) p μ
@[deprecated MeasureTheory.MemLp.inf (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.inf {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {μ : Measure α} {p : ENNReal} [NormedLatticeAddCommGroup E] {f g : αE} (hf : MemLp f p μ) (hg : MemLp g p μ) :
MemLp (f g) p μ

Alias of MeasureTheory.MemLp.inf.

theorem MeasureTheory.MemLp.abs {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {μ : Measure α} {p : ENNReal} [NormedLatticeAddCommGroup E] {f : αE} (hf : MemLp f p μ) :
MemLp |f| p μ
@[deprecated MeasureTheory.MemLp.abs (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.abs {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {μ : Measure α} {p : ENNReal} [NormedLatticeAddCommGroup E] {f : αE} (hf : MemLp f p μ) :
MemLp |f| p μ

Alias of MeasureTheory.MemLp.abs.

theorem MeasureTheory.Lp.coeFn_sup {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {μ : Measure α} {p : ENNReal} [NormedLatticeAddCommGroup E] (f g : (Lp E p μ)) :
↑(f g) =ᶠ[ae μ] f g
theorem MeasureTheory.Lp.coeFn_inf {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {μ : Measure α} {p : ENNReal} [NormedLatticeAddCommGroup E] (f g : (Lp E p μ)) :
↑(f g) =ᶠ[ae μ] f g
theorem MeasureTheory.Lp.coeFn_abs {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {μ : Measure α} {p : ENNReal} [NormedLatticeAddCommGroup E] (f : (Lp E p μ)) :
|f| =ᶠ[ae μ] fun (x : α) => |f x|