ℒp seminorms and indicator functions #
theorem
MeasureTheory.eLpNorm_indicator_eq_eLpNorm_restrict
{α : Type u_1}
{m0 : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
{ε : Type u_7}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{f : α → ε}
{s : Set α}
(hs : MeasurableSet s)
:
theorem
MeasureTheory.eLpNormEssSup_indicator_eq_eLpNormEssSup_restrict
{α : Type u_1}
{F : Type u_5}
{m0 : MeasurableSpace α}
{μ : Measure α}
[NormedAddCommGroup F]
{f : α → F}
{s : Set α}
(hs : MeasurableSet s)
:
theorem
MeasureTheory.eLpNorm_restrict_le
{α : Type u_1}
{m0 : MeasurableSpace α}
{ε' : Type u_8}
[TopologicalSpace ε']
[ContinuousENorm ε']
(f : α → ε')
(p : ENNReal)
(μ : Measure α)
(s : Set α)
:
theorem
MeasureTheory.eLpNorm_indicator_le
{α : Type u_1}
{m0 : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
{ε : Type u_7}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{s : Set α}
(f : α → ε)
:
theorem
MeasureTheory.eLpNormEssSup_indicator_le
{α : Type u_1}
{m0 : MeasurableSpace α}
{μ : Measure α}
{ε : Type u_7}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
(s : Set α)
(f : α → ε)
:
theorem
MeasureTheory.eLpNormEssSup_indicator_const_le
{α : Type u_1}
{m0 : MeasurableSpace α}
{μ : Measure α}
{ε : Type u_7}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
(s : Set α)
(c : ε)
:
theorem
MeasureTheory.eLpNormEssSup_indicator_const_eq
{α : Type u_1}
{m0 : MeasurableSpace α}
{μ : Measure α}
{ε : Type u_7}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
(s : Set α)
(c : ε)
(hμs : μ s ≠ 0)
:
theorem
MeasureTheory.eLpNorm_indicator_const₀
{α : Type u_1}
{m0 : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
{ε : Type u_7}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{c : ε}
{s : Set α}
(hs : NullMeasurableSet s μ)
(hp : p ≠ 0)
(hp_top : p ≠ ⊤)
:
theorem
MeasureTheory.eLpNorm_indicator_const
{α : Type u_1}
{m0 : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
{ε : Type u_7}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{c : ε}
{s : Set α}
(hs : MeasurableSet s)
(hp : p ≠ 0)
(hp_top : p ≠ ⊤)
:
theorem
MeasureTheory.eLpNorm_indicator_const'
{α : Type u_1}
{m0 : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
{ε : Type u_7}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{c : ε}
{s : Set α}
(hs : MeasurableSet s)
(hμs : μ s ≠ 0)
(hp : p ≠ 0)
:
theorem
MeasureTheory.eLpNorm_indicator_const_le
{α : Type u_1}
{m0 : MeasurableSpace α}
{μ : Measure α}
{ε : Type u_7}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
(c : ε)
{s : Set α}
(p : ENNReal)
:
theorem
MeasureTheory.MemLp.indicator
{α : Type u_1}
{m0 : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
{ε : Type u_7}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{s : Set α}
{f : α → ε}
(hs : MeasurableSet s)
(hf : MemLp f p μ)
:
theorem
MeasureTheory.memLp_indicator_iff_restrict
{α : Type u_1}
{m0 : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
{ε : Type u_7}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{s : Set α}
{f : α → ε}
(hs : MeasurableSet s)
:
theorem
MeasureTheory.memLp_indicator_const
{α : Type u_1}
{E : Type u_4}
{m0 : MeasurableSpace α}
{μ : Measure α}
[NormedAddCommGroup E]
{s : Set α}
(p : ENNReal)
(hs : MeasurableSet s)
(c : E)
(hμsc : c = 0 ∨ μ s ≠ ⊤)
:
theorem
MeasureTheory.eLpNormEssSup_piecewise
{α : Type u_1}
{m0 : MeasurableSpace α}
{μ : Measure α}
{ε : Type u_7}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{s : Set α}
(f g : α → ε)
[DecidablePred fun (x : α) => x ∈ s]
(hs : MeasurableSet s)
:
eLpNormEssSup (s.piecewise f g) μ = max (eLpNormEssSup f (μ.restrict s)) (eLpNormEssSup g (μ.restrict sᶜ))
theorem
MeasureTheory.eLpNorm_top_piecewise
{α : Type u_1}
{m0 : MeasurableSpace α}
{μ : Measure α}
{ε : Type u_7}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{s : Set α}
(f g : α → ε)
[DecidablePred fun (x : α) => x ∈ s]
(hs : MeasurableSet s)
:
theorem
MeasureTheory.MemLp.piecewise
{α : Type u_1}
{m0 : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
{ε : Type u_7}
[TopologicalSpace ε]
[ESeminormedAddMonoid ε]
{s : Set α}
{f : α → ε}
[DecidablePred fun (x : α) => x ∈ s]
{g : α → ε}
(hs : MeasurableSet s)
(hf : MemLp f p (μ.restrict s))
(hg : MemLp g p (μ.restrict sᶜ))
:
theorem
MeasureTheory.eLpNorm_indicator_sub_le_of_dist_bdd
{α : Type u_1}
{m0 : MeasurableSpace α}
{p : ENNReal}
{s : Set α}
{β : Type u_9}
[NormedAddCommGroup β]
(μ : Measure α := by volume_tac)
(hp' : p ≠ ⊤)
(hs : MeasurableSet s)
{f g : α → β}
{c : ℝ}
(hc : 0 ≤ c)
(hf : ∀ x ∈ s, dist (f x) (g x) ≤ c)
:
theorem
MeasureTheory.eLpNorm_sub_le_of_dist_bdd
{α : Type u_1}
{m0 : MeasurableSpace α}
{p : ENNReal}
{s : Set α}
{β : Type u_9}
[NormedAddCommGroup β]
(μ : Measure α := by volume_tac)
(hp : p ≠ ⊤)
(hs : MeasurableSet s)
{c : ℝ}
(hc : 0 ≤ c)
{f g : α → β}
(h : ∀ (x : α), dist (f x) (g x) ≤ c)
(hs₁ : Function.support f ⊆ s)
(hs₂ : Function.support g ⊆ s)
:
theorem
MeasureTheory.MemLp.exists_eLpNorm_indicator_compl_lt
{α : Type u_1}
{m0 : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
{β : Type u_7}
[NormedAddCommGroup β]
(hp_top : p ≠ ⊤)
{f : α → β}
(hf : MemLp f p μ)
{ε : ENNReal}
(hε : ε ≠ 0)
:
A single function that is MemLp f p μ is tight with respect to μ.