Documentation

Mathlib.MeasureTheory.Function.LpSeminorm.Indicator

ℒp seminorms and indicator functions #

theorem MeasureTheory.eLpNorm_indicator_eq_eLpNorm_restrict {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {f : αε} {s : Set α} (hs : MeasurableSet s) :
eLpNorm (s.indicator f) p μ = eLpNorm f p (μ.restrict s)
theorem MeasureTheory.eLpNorm_restrict_le {α : Type u_1} {m0 : MeasurableSpace α} {ε' : Type u_8} [TopologicalSpace ε'] [ContinuousENorm ε'] (f : αε') (p : ENNReal) (μ : Measure α) (s : Set α) :
eLpNorm f p (μ.restrict s) eLpNorm f p μ
theorem MeasureTheory.eLpNorm_indicator_le {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {s : Set α} (f : αε) :
eLpNorm (s.indicator f) p μ eLpNorm f p μ
theorem MeasureTheory.eLpNormEssSup_indicator_le {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ESeminormedAddMonoid ε] (s : Set α) (f : αε) :
theorem MeasureTheory.eLpNormEssSup_indicator_const_le {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ESeminormedAddMonoid ε] (s : Set α) (c : ε) :
eLpNormEssSup (s.indicator fun (x : α) => c) μ c‖ₑ
theorem MeasureTheory.eLpNormEssSup_indicator_const_eq {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ESeminormedAddMonoid ε] (s : Set α) (c : ε) (hμs : μ s 0) :
eLpNormEssSup (s.indicator fun (x : α) => c) μ = c‖ₑ
theorem MeasureTheory.eLpNorm_indicator_const₀ {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {c : ε} {s : Set α} (hs : NullMeasurableSet s μ) (hp : p 0) (hp_top : p ) :
eLpNorm (s.indicator fun (x : α) => c) p μ = c‖ₑ * μ s ^ (1 / p.toReal)
theorem MeasureTheory.eLpNorm_indicator_const {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {c : ε} {s : Set α} (hs : MeasurableSet s) (hp : p 0) (hp_top : p ) :
eLpNorm (s.indicator fun (x : α) => c) p μ = c‖ₑ * μ s ^ (1 / p.toReal)
theorem MeasureTheory.eLpNorm_indicator_const' {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {c : ε} {s : Set α} (hs : MeasurableSet s) (hμs : μ s 0) (hp : p 0) :
eLpNorm (s.indicator fun (x : α) => c) p μ = c‖ₑ * μ s ^ (1 / p.toReal)
theorem MeasureTheory.eLpNorm_indicator_const_le {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ESeminormedAddMonoid ε] (c : ε) {s : Set α} (p : ENNReal) :
eLpNorm (s.indicator fun (x : α) => c) p μ c‖ₑ * μ s ^ (1 / p.toReal)
theorem MeasureTheory.MemLp.indicator {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {s : Set α} {f : αε} (hs : MeasurableSet s) (hf : MemLp f p μ) :
MemLp (s.indicator f) p μ
theorem MeasureTheory.memLp_indicator_iff_restrict {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {s : Set α} {f : αε} (hs : MeasurableSet s) :
MemLp (s.indicator f) p μ MemLp f p (μ.restrict s)
theorem MeasureTheory.memLp_indicator_const {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] {s : Set α} (p : ENNReal) (hs : MeasurableSet s) (c : E) (hμsc : c = 0 μ s ) :
MemLp (s.indicator fun (x : α) => c) p μ
theorem MeasureTheory.eLpNormEssSup_piecewise {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {s : Set α} (f g : αε) [DecidablePred fun (x : α) => x s] (hs : MeasurableSet s) :
theorem MeasureTheory.eLpNorm_top_piecewise {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {s : Set α} (f g : αε) [DecidablePred fun (x : α) => x s] (hs : MeasurableSet s) :
eLpNorm (s.piecewise f g) μ = max (eLpNorm f (μ.restrict s)) (eLpNorm g (μ.restrict s))
theorem MeasureTheory.MemLp.piecewise {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ESeminormedAddMonoid ε] {s : Set α} {f : αε} [DecidablePred fun (x : α) => x s] {g : αε} (hs : MeasurableSet s) (hf : MemLp f p (μ.restrict s)) (hg : MemLp g p (μ.restrict s)) :
MemLp (s.piecewise f g) p μ
theorem MeasureTheory.eLpNorm_indicator_sub_le_of_dist_bdd {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {s : Set α} {β : Type u_9} [NormedAddCommGroup β] (μ : Measure α := by volume_tac) (hp' : p ) (hs : MeasurableSet s) {f g : αβ} {c : } (hc : 0 c) (hf : xs, dist (f x) (g x) c) :
eLpNorm (s.indicator (f - g)) p μ ENNReal.ofReal c * μ s ^ (1 / p.toReal)
theorem MeasureTheory.eLpNorm_sub_le_of_dist_bdd {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {s : Set α} {β : Type u_9} [NormedAddCommGroup β] (μ : Measure α := by volume_tac) (hp : p ) (hs : MeasurableSet s) {c : } (hc : 0 c) {f g : αβ} (h : ∀ (x : α), dist (f x) (g x) c) (hs₁ : Function.support f s) (hs₂ : Function.support g s) :
eLpNorm (f - g) p μ ENNReal.ofReal c * μ s ^ (1 / p.toReal)
theorem MeasureTheory.MemLp.exists_eLpNorm_indicator_compl_lt {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {β : Type u_7} [NormedAddCommGroup β] (hp_top : p ) {f : αβ} (hf : MemLp f p μ) {ε : ENNReal} ( : ε 0) :
∃ (s : Set α), MeasurableSet s μ s < eLpNorm (s.indicator f) p μ < ε

A single function that is MemLp f p μ is tight with respect to μ.