Documentation

Mathlib.MeasureTheory.Function.LpSeminorm.Basic

Basic theorems about ℒp space #

theorem MeasureTheory.MemLp.eLpNorm_lt_top {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ENorm ε] [TopologicalSpace ε] {f : αε} (hfp : MemLp f p μ) :
eLpNorm f p μ <
@[deprecated MeasureTheory.MemLp.eLpNorm_lt_top (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.eLpNorm_lt_top {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ENorm ε] [TopologicalSpace ε] {f : αε} (hfp : MemLp f p μ) :
eLpNorm f p μ <

Alias of MeasureTheory.MemLp.eLpNorm_lt_top.

theorem MeasureTheory.MemLp.eLpNorm_ne_top {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ENorm ε] [TopologicalSpace ε] {f : αε} (hfp : MemLp f p μ) :
eLpNorm f p μ
@[deprecated MeasureTheory.MemLp.eLpNorm_ne_top (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.eLpNorm_ne_top {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ENorm ε] [TopologicalSpace ε] {f : αε} (hfp : MemLp f p μ) :
eLpNorm f p μ

Alias of MeasureTheory.MemLp.eLpNorm_ne_top.

theorem MeasureTheory.lintegral_rpow_enorm_lt_top_of_eLpNorm'_lt_top {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {q : } {μ : Measure α} [ENorm ε] {f : αε} (hq0_lt : 0 < q) (hfq : eLpNorm' f q μ < ) :
∫⁻ (a : α), f a‖ₑ ^ q μ <
@[deprecated MeasureTheory.lintegral_rpow_enorm_lt_top_of_eLpNorm'_lt_top (since := "2025-01-17")]
theorem MeasureTheory.lintegral_rpow_nnnorm_lt_top_of_eLpNorm'_lt_top' {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {q : } {μ : Measure α} [ENorm ε] {f : αε} (hq0_lt : 0 < q) (hfq : eLpNorm' f q μ < ) :
∫⁻ (a : α), f a‖ₑ ^ q μ <

Alias of MeasureTheory.lintegral_rpow_enorm_lt_top_of_eLpNorm'_lt_top.

theorem MeasureTheory.lintegral_rpow_enorm_lt_top_of_eLpNorm_lt_top {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ENorm ε] {f : αε} (hp_ne_zero : p 0) (hp_ne_top : p ) (hfp : eLpNorm f p μ < ) :
∫⁻ (a : α), f a‖ₑ ^ p.toReal μ <
@[deprecated MeasureTheory.lintegral_rpow_enorm_lt_top_of_eLpNorm_lt_top (since := "2025-01-17")]
theorem MeasureTheory.lintegral_rpow_nnnorm_lt_top_of_eLpNorm_lt_top {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ENorm ε] {f : αε} (hp_ne_zero : p 0) (hp_ne_top : p ) (hfp : eLpNorm f p μ < ) :
∫⁻ (a : α), f a‖ₑ ^ p.toReal μ <

Alias of MeasureTheory.lintegral_rpow_enorm_lt_top_of_eLpNorm_lt_top.

theorem MeasureTheory.eLpNorm_lt_top_iff_lintegral_rpow_enorm_lt_top {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ENorm ε] {f : αε} (hp_ne_zero : p 0) (hp_ne_top : p ) :
eLpNorm f p μ < ∫⁻ (a : α), f a‖ₑ ^ p.toReal μ <
@[deprecated MeasureTheory.eLpNorm_lt_top_iff_lintegral_rpow_enorm_lt_top (since := "2025-02-04")]
theorem MeasureTheory.eLpNorm_lt_top_iff_lintegral_rpow_nnnorm_lt_top {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ENorm ε] {f : αε} (hp_ne_zero : p 0) (hp_ne_top : p ) :
eLpNorm f p μ < ∫⁻ (a : α), f a‖ₑ ^ p.toReal μ <

Alias of MeasureTheory.eLpNorm_lt_top_iff_lintegral_rpow_enorm_lt_top.

@[simp]
theorem MeasureTheory.eLpNorm'_exponent_zero {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {μ : Measure α} [ENorm ε] {f : αε} :
eLpNorm' f 0 μ = 1
@[simp]
theorem MeasureTheory.eLpNorm_exponent_zero {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {μ : Measure α} [ENorm ε] {f : αε} :
eLpNorm f 0 μ = 0
@[simp]
theorem MeasureTheory.memLp_zero_iff_aestronglyMeasurable {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {μ : Measure α} [ENorm ε] [TopologicalSpace ε] {f : αε} :
@[deprecated MeasureTheory.memLp_zero_iff_aestronglyMeasurable (since := "2025-02-21")]
theorem MeasureTheory.memℒp_zero_iff_aestronglyMeasurable {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {μ : Measure α} [ENorm ε] [TopologicalSpace ε] {f : αε} :

Alias of MeasureTheory.memLp_zero_iff_aestronglyMeasurable.

@[simp]
theorem MeasureTheory.eLpNorm'_zero {α : Type u_1} {m0 : MeasurableSpace α} {q : } {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] (hp0_lt : 0 < q) :
eLpNorm' 0 q μ = 0
@[simp]
theorem MeasureTheory.eLpNorm'_zero' {α : Type u_1} {m0 : MeasurableSpace α} {q : } {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] (hq0_ne : q 0) ( : μ 0) :
eLpNorm' 0 q μ = 0
@[simp]
theorem MeasureTheory.eLpNormEssSup_zero {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] :
@[simp]
theorem MeasureTheory.eLpNorm_zero {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] :
eLpNorm 0 p μ = 0
@[simp]
theorem MeasureTheory.eLpNorm_zero' {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] :
eLpNorm (fun (x : α) => 0) p μ = 0
@[simp]
theorem MeasureTheory.MemLp.zero {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] :
MemLp 0 p μ
@[simp]
theorem MeasureTheory.MemLp.zero' {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] :
MemLp (fun (x : α) => 0) p μ
@[deprecated MeasureTheory.MemLp.zero' (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.zero' {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] :
MemLp (fun (x : α) => 0) p μ

Alias of MeasureTheory.MemLp.zero'.

@[deprecated MeasureTheory.MemLp.zero (since := "2025-01-21")]
theorem MeasureTheory.zero_memℒp {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] :
MemLp 0 p μ

Alias of MeasureTheory.MemLp.zero.

@[deprecated MeasureTheory.MemLp.zero' (since := "2025-01-21")]
theorem MeasureTheory.zero_mem_ℒp {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] :
MemLp (fun (x : α) => 0) p μ

Alias of MeasureTheory.MemLp.zero'.

theorem MeasureTheory.eLpNorm'_measure_zero_of_pos {α : Type u_1} {q : } {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] [MeasurableSpace α] {f : αε} (hq_pos : 0 < q) :
eLpNorm' f q 0 = 0
theorem MeasureTheory.eLpNorm'_measure_zero_of_neg {α : Type u_1} {q : } {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] [MeasurableSpace α] {f : αε} (hq_neg : q < 0) :
eLpNorm' f q 0 =
@[simp]
theorem MeasureTheory.eLpNormEssSup_measure_zero {α : Type u_1} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] [MeasurableSpace α] {f : αε} :
@[simp]
theorem MeasureTheory.eLpNorm_measure_zero {α : Type u_1} {p : ENNReal} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] [MeasurableSpace α] {f : αε} :
eLpNorm f p 0 = 0
@[simp]
theorem MeasureTheory.memLp_measure_zero {α : Type u_1} {p : ENNReal} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] [MeasurableSpace α] {f : αε} :
MemLp f p 0
@[deprecated MeasureTheory.memLp_measure_zero (since := "2025-02-21")]
theorem MeasureTheory.memℒp_measure_zero {α : Type u_1} {p : ENNReal} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] [MeasurableSpace α] {f : αε} :
MemLp f p 0

Alias of MeasureTheory.memLp_measure_zero.

@[simp]
theorem MeasureTheory.eLpNorm'_neg {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} [NormedAddCommGroup F] (f : αF) (q : ) (μ : Measure α) :
eLpNorm' (-f) q μ = eLpNorm' f q μ
@[simp]
theorem MeasureTheory.eLpNorm_neg {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} [NormedAddCommGroup F] (f : αF) (p : ENNReal) (μ : Measure α) :
eLpNorm (-f) p μ = eLpNorm f p μ
theorem MeasureTheory.eLpNorm_sub_comm {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} [NormedAddCommGroup E] (f g : αE) (p : ENNReal) (μ : Measure α) :
eLpNorm (f - g) p μ = eLpNorm (g - f) p μ
theorem MeasureTheory.MemLp.neg {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (hf : MemLp f p μ) :
MemLp (-f) p μ
@[deprecated MeasureTheory.MemLp.neg (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.neg {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (hf : MemLp f p μ) :
MemLp (-f) p μ

Alias of MeasureTheory.MemLp.neg.

theorem MeasureTheory.memLp_neg_iff {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} :
MemLp (-f) p μ MemLp f p μ
@[deprecated MeasureTheory.memLp_neg_iff (since := "2025-02-21")]
theorem MeasureTheory.memℒp_neg_iff {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} :
MemLp (-f) p μ MemLp f p μ

Alias of MeasureTheory.memLp_neg_iff.

theorem MeasureTheory.eLpNorm'_const {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {q : } {μ : Measure α} [ENorm ε] (c : ε) (hq_pos : 0 < q) :
eLpNorm' (fun (x : α) => c) q μ = c‖ₑ * μ Set.univ ^ (1 / q)
theorem MeasureTheory.eLpNorm'_const' {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {q : } {μ : Measure α} [NormedAddCommGroup F] [IsFiniteMeasure μ] (c : F) (hc_ne_zero : c 0) (hq_ne_zero : q 0) :
eLpNorm' (fun (x : α) => c) q μ = c‖ₑ * μ Set.univ ^ (1 / q)
theorem MeasureTheory.eLpNormEssSup_const {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {μ : Measure α} [ENorm ε] (c : ε) ( : μ 0) :
eLpNormEssSup (fun (x : α) => c) μ = c‖ₑ
theorem MeasureTheory.eLpNorm'_const_of_isProbabilityMeasure {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {q : } {μ : Measure α} [ENorm ε] (c : ε) (hq_pos : 0 < q) [IsProbabilityMeasure μ] :
eLpNorm' (fun (x : α) => c) q μ = c‖ₑ
theorem MeasureTheory.eLpNorm_const {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ENorm ε] (c : ε) (h0 : p 0) ( : μ 0) :
eLpNorm (fun (x : α) => c) p μ = c‖ₑ * μ Set.univ ^ (1 / p.toReal)
theorem MeasureTheory.eLpNorm_const' {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ENorm ε] (c : ε) (h0 : p 0) (h_top : p ) :
eLpNorm (fun (x : α) => c) p μ = c‖ₑ * μ Set.univ ^ (1 / p.toReal)
theorem MeasureTheory.eLpNorm_const_lt_top_iff {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup F] {p : ENNReal} {c : F} (hp_ne_zero : p 0) (hp_ne_top : p ) :
eLpNorm (fun (x : α) => c) p μ < c = 0 μ Set.univ <
theorem MeasureTheory.memLp_const {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (c : E) [IsFiniteMeasure μ] :
MemLp (fun (x : α) => c) p μ
@[deprecated MeasureTheory.memLp_const (since := "2025-02-21")]
theorem MeasureTheory.memℒp_const {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (c : E) [IsFiniteMeasure μ] :
MemLp (fun (x : α) => c) p μ

Alias of MeasureTheory.memLp_const.

theorem MeasureTheory.memLp_top_const {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] (c : E) :
MemLp (fun (x : α) => c) μ
@[deprecated MeasureTheory.memLp_top_const (since := "2025-02-21")]
theorem MeasureTheory.memℒp_top_const {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] (c : E) :
MemLp (fun (x : α) => c) μ

Alias of MeasureTheory.memLp_top_const.

theorem MeasureTheory.memLp_const_iff {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] {p : ENNReal} {c : E} (hp_ne_zero : p 0) (hp_ne_top : p ) :
MemLp (fun (x : α) => c) p μ c = 0 μ Set.univ <
@[deprecated MeasureTheory.memLp_const_iff (since := "2025-02-21")]
theorem MeasureTheory.memℒp_const_iff {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] {p : ENNReal} {c : E} (hp_ne_zero : p 0) (hp_ne_top : p ) :
MemLp (fun (x : α) => c) p μ c = 0 μ Set.univ <

Alias of MeasureTheory.memLp_const_iff.

theorem MeasureTheory.eLpNorm'_mono_enorm_ae {α : Type u_1} {ε : Type u_2} {ε' : Type u_3} {m0 : MeasurableSpace α} {q : } {μ : Measure α} [ENorm ε] [ENorm ε'] {f : αε} {g : αε'} (hq : 0 q) (h : ∀ᵐ (x : α) μ, f x‖ₑ g x‖ₑ) :
eLpNorm' f q μ eLpNorm' g q μ
theorem MeasureTheory.eLpNorm'_mono_nnnorm_ae {α : Type u_1} {F : Type u_5} {G : Type u_6} {m0 : MeasurableSpace α} {q : } {μ : Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (hq : 0 q) (h : ∀ᵐ (x : α) μ, f x‖₊ g x‖₊) :
eLpNorm' f q μ eLpNorm' g q μ
theorem MeasureTheory.eLpNorm'_mono_ae {α : Type u_1} {F : Type u_5} {G : Type u_6} {m0 : MeasurableSpace α} {q : } {μ : Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (hq : 0 q) (h : ∀ᵐ (x : α) μ, f x g x) :
eLpNorm' f q μ eLpNorm' g q μ
theorem MeasureTheory.eLpNorm'_congr_enorm_ae {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {q : } {μ : Measure α} [ENorm ε] {f g : αε} (hfg : ∀ᵐ (x : α) μ, f x‖ₑ = g x‖ₑ) :
eLpNorm' f q μ = eLpNorm' g q μ
theorem MeasureTheory.eLpNorm'_congr_nnnorm_ae {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {q : } {μ : Measure α} [NormedAddCommGroup F] {f g : αF} (hfg : ∀ᵐ (x : α) μ, f x‖₊ = g x‖₊) :
eLpNorm' f q μ = eLpNorm' g q μ
theorem MeasureTheory.eLpNorm'_congr_norm_ae {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {q : } {μ : Measure α} [NormedAddCommGroup F] {f g : αF} (hfg : ∀ᵐ (x : α) μ, f x = g x) :
eLpNorm' f q μ = eLpNorm' g q μ
theorem MeasureTheory.eLpNorm'_congr_ae {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {q : } {μ : Measure α} [ENorm ε] {f g : αε} (hfg : f =ᶠ[ae μ] g) :
eLpNorm' f q μ = eLpNorm' g q μ
theorem MeasureTheory.eLpNormEssSup_congr_ae {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {μ : Measure α} [ENorm ε] {f g : αε} (hfg : f =ᶠ[ae μ] g) :
theorem MeasureTheory.eLpNormEssSup_mono_enorm_ae {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {μ : Measure α} [ENorm ε] {f g : αε} (hfg : ∀ᵐ (x : α) μ, f x‖ₑ g x‖ₑ) :
theorem MeasureTheory.eLpNormEssSup_mono_nnnorm_ae {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup F] {f g : αF} (hfg : ∀ᵐ (x : α) μ, f x‖₊ g x‖₊) :
theorem MeasureTheory.eLpNorm_mono_enorm_ae {α : Type u_1} {ε : Type u_2} {ε' : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ENorm ε] [ENorm ε'] {f : αε} {g : αε'} (h : ∀ᵐ (x : α) μ, f x‖ₑ g x‖ₑ) :
eLpNorm f p μ eLpNorm g p μ
theorem MeasureTheory.eLpNorm_mono_nnnorm_ae {α : Type u_1} {F : Type u_5} {G : Type u_6} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (h : ∀ᵐ (x : α) μ, f x‖₊ g x‖₊) :
eLpNorm f p μ eLpNorm g p μ
theorem MeasureTheory.eLpNorm_mono_ae {α : Type u_1} {F : Type u_5} {G : Type u_6} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (h : ∀ᵐ (x : α) μ, f x g x) :
eLpNorm f p μ eLpNorm g p μ
theorem MeasureTheory.eLpNorm_mono_ae' {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ENorm ε] {ε' : Type u_7} [TopologicalSpace ε'] [ENormedAddMonoid ε'] {f : αε} {g : αε'} (h : ∀ᵐ (x : α) μ, f x‖ₑ g x‖ₑ) :
eLpNorm f p μ eLpNorm g p μ
theorem MeasureTheory.eLpNorm_mono_ae_real {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] {f : αF} {g : α} (h : ∀ᵐ (x : α) μ, f x g x) :
eLpNorm f p μ eLpNorm g p μ
theorem MeasureTheory.eLpNorm_mono_enorm {α : Type u_1} {ε : Type u_2} {ε' : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ENorm ε] [ENorm ε'] {f : αε} {g : αε'} (h : ∀ (x : α), f x‖ₑ g x‖ₑ) :
eLpNorm f p μ eLpNorm g p μ
theorem MeasureTheory.eLpNorm_mono_nnnorm {α : Type u_1} {F : Type u_5} {G : Type u_6} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (h : ∀ (x : α), f x‖₊ g x‖₊) :
eLpNorm f p μ eLpNorm g p μ
theorem MeasureTheory.eLpNorm_mono {α : Type u_1} {F : Type u_5} {G : Type u_6} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (h : ∀ (x : α), f x g x) :
eLpNorm f p μ eLpNorm g p μ
theorem MeasureTheory.eLpNorm_mono_real {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] {f : αF} {g : α} (h : ∀ (x : α), f x g x) :
eLpNorm f p μ eLpNorm g p μ
theorem MeasureTheory.eLpNormEssSup_le_of_ae_enorm_bound {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {μ : Measure α} [ENorm ε] {f : αε} {C : ENNReal} (hfC : ∀ᵐ (x : α) μ, f x‖ₑ C) :
theorem MeasureTheory.eLpNormEssSup_le_of_ae_nnnorm_bound {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup F] {f : αF} {C : NNReal} (hfC : ∀ᵐ (x : α) μ, f x‖₊ C) :
eLpNormEssSup f μ C
theorem MeasureTheory.eLpNormEssSup_le_of_ae_bound {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup F] {f : αF} {C : } (hfC : ∀ᵐ (x : α) μ, f x C) :
theorem MeasureTheory.eLpNormEssSup_lt_top_of_ae_enorm_bound {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {μ : Measure α} [ENorm ε] {f : αε} {C : NNReal} (hfC : ∀ᵐ (x : α) μ, f x‖ₑ C) :
theorem MeasureTheory.eLpNormEssSup_lt_top_of_ae_nnnorm_bound {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup F] {f : αF} {C : NNReal} (hfC : ∀ᵐ (x : α) μ, f x‖₊ C) :
theorem MeasureTheory.eLpNormEssSup_lt_top_of_ae_bound {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup F] {f : αF} {C : } (hfC : ∀ᵐ (x : α) μ, f x C) :
theorem MeasureTheory.eLpNorm_le_of_ae_enorm_bound {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} {C : ENNReal} (hfC : ∀ᵐ (x : α) μ, f x‖ₑ C) :
theorem MeasureTheory.eLpNorm_le_of_ae_nnnorm_bound {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] {f : αF} {C : NNReal} (hfC : ∀ᵐ (x : α) μ, f x‖₊ C) :
theorem MeasureTheory.eLpNorm_le_of_ae_bound {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] {f : αF} {C : } (hfC : ∀ᵐ (x : α) μ, f x C) :
theorem MeasureTheory.eLpNorm_congr_enorm_ae {α : Type u_1} {ε : Type u_2} {ε' : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ENorm ε] [ENorm ε'] {f : αε} {g : αε'} (hfg : ∀ᵐ (x : α) μ, f x‖ₑ = g x‖ₑ) :
eLpNorm f p μ = eLpNorm g p μ
theorem MeasureTheory.eLpNorm_congr_nnnorm_ae {α : Type u_1} {F : Type u_5} {G : Type u_6} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (hfg : ∀ᵐ (x : α) μ, f x‖₊ = g x‖₊) :
eLpNorm f p μ = eLpNorm g p μ
theorem MeasureTheory.eLpNorm_congr_norm_ae {α : Type u_1} {F : Type u_5} {G : Type u_6} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (hfg : ∀ᵐ (x : α) μ, f x = g x) :
eLpNorm f p μ = eLpNorm g p μ
theorem MeasureTheory.eLpNorm_indicator_sub_indicator {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (s t : Set α) (f : αE) :
eLpNorm (s.indicator f - t.indicator f) p μ = eLpNorm ((symmDiff s t).indicator f) p μ
@[simp]
theorem MeasureTheory.eLpNorm'_norm {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {q : } {μ : Measure α} [NormedAddCommGroup F] {f : αF} :
eLpNorm' (fun (a : α) => f a) q μ = eLpNorm' f q μ
@[simp]
theorem MeasureTheory.eLpNorm'_enorm {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {q : } {μ : Measure α} [ENorm ε] {f : αε} :
eLpNorm' (fun (a : α) => f a‖ₑ) q μ = eLpNorm' f q μ
@[simp]
theorem MeasureTheory.eLpNorm_norm {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] (f : αF) :
eLpNorm (fun (x : α) => f x) p μ = eLpNorm f p μ
@[simp]
theorem MeasureTheory.eLpNorm_enorm {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ENorm ε] (f : αε) :
eLpNorm (fun (x : α) => f x‖ₑ) p μ = eLpNorm f p μ
theorem MeasureTheory.eLpNorm'_norm_rpow {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup F] (f : αF) (p q : ) (hq_pos : 0 < q) :
eLpNorm' (fun (x : α) => f x ^ q) p μ = eLpNorm' f (p * q) μ ^ q
theorem MeasureTheory.eLpNorm_norm_rpow {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {q : } {μ : Measure α} [NormedAddCommGroup F] (f : αF) (hq_pos : 0 < q) :
eLpNorm (fun (x : α) => f x ^ q) p μ = eLpNorm f (p * ENNReal.ofReal q) μ ^ q
theorem MeasureTheory.eLpNorm_congr_ae {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ENorm ε] {f g : αε} (hfg : f =ᶠ[ae μ] g) :
eLpNorm f p μ = eLpNorm g p μ
theorem MeasureTheory.memLp_congr_ae {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ENorm ε] [TopologicalSpace ε] {f g : αε} (hfg : f =ᶠ[ae μ] g) :
MemLp f p μ MemLp g p μ
@[deprecated MeasureTheory.memLp_congr_ae (since := "2025-02-21")]
theorem MeasureTheory.memℒp_congr_ae {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ENorm ε] [TopologicalSpace ε] {f g : αε} (hfg : f =ᶠ[ae μ] g) :
MemLp f p μ MemLp g p μ

Alias of MeasureTheory.memLp_congr_ae.

theorem MeasureTheory.MemLp.ae_eq {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ENorm ε] [TopologicalSpace ε] {f g : αε} (hfg : f =ᶠ[ae μ] g) (hf_Lp : MemLp f p μ) :
MemLp g p μ
@[deprecated MeasureTheory.MemLp.ae_eq (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.ae_eq {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [ENorm ε] [TopologicalSpace ε] {f g : αε} (hfg : f =ᶠ[ae μ] g) (hf_Lp : MemLp f p μ) :
MemLp g p μ

Alias of MeasureTheory.MemLp.ae_eq.

theorem MeasureTheory.MemLp.of_le {α : Type u_1} {E : Type u_4} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} (hg : MemLp g p μ) (hf : AEStronglyMeasurable f μ) (hfg : ∀ᵐ (x : α) μ, f x g x) :
MemLp f p μ
@[deprecated MeasureTheory.MemLp.of_le (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.of_le {α : Type u_1} {E : Type u_4} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} (hg : MemLp g p μ) (hf : AEStronglyMeasurable f μ) (hfg : ∀ᵐ (x : α) μ, f x g x) :
MemLp f p μ

Alias of MeasureTheory.MemLp.of_le.

theorem MeasureTheory.MemLp.mono {α : Type u_1} {E : Type u_4} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} (hg : MemLp g p μ) (hf : AEStronglyMeasurable f μ) (hfg : ∀ᵐ (x : α) μ, f x g x) :
MemLp f p μ

Alias of MeasureTheory.MemLp.of_le.

@[deprecated MeasureTheory.MemLp.mono (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.mono {α : Type u_1} {E : Type u_4} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} (hg : MemLp g p μ) (hf : AEStronglyMeasurable f μ) (hfg : ∀ᵐ (x : α) μ, f x g x) :
MemLp f p μ

Alias of MeasureTheory.MemLp.of_le.


Alias of MeasureTheory.MemLp.of_le.

theorem MeasureTheory.MemLp.mono' {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} {g : α} (hg : MemLp g p μ) (hf : AEStronglyMeasurable f μ) (h : ∀ᵐ (a : α) μ, f a g a) :
MemLp f p μ
@[deprecated MeasureTheory.MemLp.mono' (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.mono' {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} {g : α} (hg : MemLp g p μ) (hf : AEStronglyMeasurable f μ) (h : ∀ᵐ (a : α) μ, f a g a) :
MemLp f p μ

Alias of MeasureTheory.MemLp.mono'.

theorem MeasureTheory.MemLp.congr_norm {α : Type u_1} {E : Type u_4} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} (hf : MemLp f p μ) (hg : AEStronglyMeasurable g μ) (h : ∀ᵐ (a : α) μ, f a = g a) :
MemLp g p μ
@[deprecated MeasureTheory.MemLp.congr_norm (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.congr_norm {α : Type u_1} {E : Type u_4} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} (hf : MemLp f p μ) (hg : AEStronglyMeasurable g μ) (h : ∀ᵐ (a : α) μ, f a = g a) :
MemLp g p μ

Alias of MeasureTheory.MemLp.congr_norm.

theorem MeasureTheory.memLp_congr_norm {α : Type u_1} {E : Type u_4} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} (hf : AEStronglyMeasurable f μ) (hg : AEStronglyMeasurable g μ) (h : ∀ᵐ (a : α) μ, f a = g a) :
MemLp f p μ MemLp g p μ
@[deprecated MeasureTheory.memLp_congr_norm (since := "2025-02-21")]
theorem MeasureTheory.memℒp_congr_norm {α : Type u_1} {E : Type u_4} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} (hf : AEStronglyMeasurable f μ) (hg : AEStronglyMeasurable g μ) (h : ∀ᵐ (a : α) μ, f a = g a) :
MemLp f p μ MemLp g p μ

Alias of MeasureTheory.memLp_congr_norm.

theorem MeasureTheory.memLp_top_of_bound {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (hf : AEStronglyMeasurable f μ) (C : ) (hfC : ∀ᵐ (x : α) μ, f x C) :
MemLp f μ
@[deprecated MeasureTheory.memLp_top_of_bound (since := "2025-02-21")]
theorem MeasureTheory.memℒp_top_of_bound {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (hf : AEStronglyMeasurable f μ) (C : ) (hfC : ∀ᵐ (x : α) μ, f x C) :
MemLp f μ

Alias of MeasureTheory.memLp_top_of_bound.

theorem MeasureTheory.MemLp.of_bound {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [IsFiniteMeasure μ] {f : αE} (hf : AEStronglyMeasurable f μ) (C : ) (hfC : ∀ᵐ (x : α) μ, f x C) :
MemLp f p μ
@[deprecated MeasureTheory.MemLp.of_bound (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.of_bound {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [IsFiniteMeasure μ] {f : αE} (hf : AEStronglyMeasurable f μ) (C : ) (hfC : ∀ᵐ (x : α) μ, f x C) :
MemLp f p μ

Alias of MeasureTheory.MemLp.of_bound.

theorem MeasureTheory.memLp_of_bounded {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} [IsFiniteMeasure μ] {a b : } {f : α} (h : ∀ᵐ (x : α) μ, f x Set.Icc a b) (hX : AEStronglyMeasurable f μ) (p : ENNReal) :
MemLp f p μ
@[deprecated MeasureTheory.memLp_of_bounded (since := "2025-02-21")]
theorem MeasureTheory.memℒp_of_bounded {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} [IsFiniteMeasure μ] {a b : } {f : α} (h : ∀ᵐ (x : α) μ, f x Set.Icc a b) (hX : AEStronglyMeasurable f μ) (p : ENNReal) :
MemLp f p μ

Alias of MeasureTheory.memLp_of_bounded.

theorem MeasureTheory.eLpNorm'_mono_measure {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {q : } {μ ν : Measure α} [ENorm ε] (f : αε) (hμν : ν μ) (hq : 0 q) :
eLpNorm' f q ν eLpNorm' f q μ
theorem MeasureTheory.eLpNormEssSup_mono_measure {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {μ ν : Measure α} [ENorm ε] (f : αε) (hμν : ν.AbsolutelyContinuous μ) :
theorem MeasureTheory.eLpNorm_mono_measure {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ ν : Measure α} [ENorm ε] (f : αε) (hμν : ν μ) :
eLpNorm f p ν eLpNorm f p μ
theorem MeasureTheory.MemLp.mono_measure {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ ν : Measure α} [ENorm ε] [TopologicalSpace ε] {f : αε} (hμν : ν μ) (hf : MemLp f p μ) :
MemLp f p ν
@[deprecated MeasureTheory.MemLp.mono_measure (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.mono_measure {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ ν : Measure α} [ENorm ε] [TopologicalSpace ε] {f : αε} (hμν : ν μ) (hf : MemLp f p μ) :
MemLp f p ν

Alias of MeasureTheory.MemLp.mono_measure.

theorem MeasureTheory.eLpNorm_indicator_eq_eLpNorm_restrict {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} {s : Set α} (hs : MeasurableSet s) :
eLpNorm (s.indicator f) p μ = eLpNorm f p (μ.restrict s)
@[deprecated MeasureTheory.eLpNorm_indicator_eq_eLpNorm_restrict (since := "2025-01-07")]
theorem MeasureTheory.eLpNorm_indicator_eq_restrict {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} {s : Set α} (hs : MeasurableSet s) :
eLpNorm (s.indicator f) p μ = eLpNorm f p (μ.restrict s)

Alias of MeasureTheory.eLpNorm_indicator_eq_eLpNorm_restrict.

theorem MeasureTheory.eLpNorm_restrict_le {α : Type u_1} {ε : Type u_2} {m0 : MeasurableSpace α} [ENorm ε] (f : αε) (p : ENNReal) (μ : Measure α) (s : Set α) :
eLpNorm f p (μ.restrict s) eLpNorm f p μ
theorem MeasureTheory.eLpNorm_indicator_le {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {s : Set α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] (f : αε) :
eLpNorm (s.indicator f) p μ eLpNorm f p μ
theorem MeasureTheory.eLpNormEssSup_indicator_le {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] (s : Set α) (f : αε) :
theorem MeasureTheory.eLpNormEssSup_indicator_const_le {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] (s : Set α) (c : ε) :
eLpNormEssSup (s.indicator fun (x : α) => c) μ c‖ₑ
theorem MeasureTheory.eLpNormEssSup_indicator_const_eq {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] (s : Set α) (c : ε) (hμs : μ s 0) :
eLpNormEssSup (s.indicator fun (x : α) => c) μ = c‖ₑ
theorem MeasureTheory.eLpNorm_indicator_const₀ {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {s : Set α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] {c : ε} (hs : NullMeasurableSet s μ) (hp : p 0) (hp_top : p ) :
eLpNorm (s.indicator fun (x : α) => c) p μ = c‖ₑ * μ s ^ (1 / p.toReal)
theorem MeasureTheory.eLpNorm_indicator_const {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {s : Set α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] {c : ε} (hs : MeasurableSet s) (hp : p 0) (hp_top : p ) :
eLpNorm (s.indicator fun (x : α) => c) p μ = c‖ₑ * μ s ^ (1 / p.toReal)
theorem MeasureTheory.eLpNorm_indicator_const' {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {s : Set α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] {c : ε} (hs : MeasurableSet s) (hμs : μ s 0) (hp : p 0) :
eLpNorm (s.indicator fun (x : α) => c) p μ = c‖ₑ * μ s ^ (1 / p.toReal)
theorem MeasureTheory.eLpNorm_indicator_const_le {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] (c : ε) (p : ENNReal) :
eLpNorm (s.indicator fun (x : α) => c) p μ c‖ₑ * μ s ^ (1 / p.toReal)
theorem MeasureTheory.MemLp.indicator {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {s : Set α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} (hs : MeasurableSet s) (hf : MemLp f p μ) :
MemLp (s.indicator f) p μ
@[deprecated MeasureTheory.MemLp.indicator (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.indicator {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {s : Set α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} (hs : MeasurableSet s) (hf : MemLp f p μ) :
MemLp (s.indicator f) p μ

Alias of MeasureTheory.MemLp.indicator.

theorem MeasureTheory.memLp_indicator_iff_restrict {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {s : Set α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} (hs : MeasurableSet s) :
MemLp (s.indicator f) p μ MemLp f p (μ.restrict s)
@[deprecated MeasureTheory.memLp_indicator_iff_restrict (since := "2025-02-21")]
theorem MeasureTheory.memℒp_indicator_iff_restrict {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {s : Set α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} (hs : MeasurableSet s) :
MemLp (s.indicator f) p μ MemLp f p (μ.restrict s)

Alias of MeasureTheory.memLp_indicator_iff_restrict.

theorem MeasureTheory.memLp_indicator_const {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] {s : Set α} (p : ENNReal) (hs : MeasurableSet s) (c : E) (hμsc : c = 0 μ s ) :
MemLp (s.indicator fun (x : α) => c) p μ
@[deprecated MeasureTheory.memLp_indicator_const (since := "2025-02-21")]
theorem MeasureTheory.memℒp_indicator_const {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] {s : Set α} (p : ENNReal) (hs : MeasurableSet s) (c : E) (hμsc : c = 0 μ s ) :
MemLp (s.indicator fun (x : α) => c) p μ

Alias of MeasureTheory.memLp_indicator_const.

theorem MeasureTheory.eLpNormEssSup_piecewise {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] (f g : αε) [DecidablePred fun (x : α) => x s] (hs : MeasurableSet s) :
theorem MeasureTheory.eLpNorm_top_piecewise {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] (f g : αε) [DecidablePred fun (x : α) => x s] (hs : MeasurableSet s) :
theorem MeasureTheory.MemLp.piecewise {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {s : Set α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} [DecidablePred fun (x : α) => x s] {g : αε} (hs : MeasurableSet s) (hf : MemLp f p (μ.restrict s)) (hg : MemLp g p (μ.restrict s)) :
MemLp (s.piecewise f g) p μ
@[deprecated MeasureTheory.MemLp.piecewise (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.piecewise {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {s : Set α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} [DecidablePred fun (x : α) => x s] {g : αε} (hs : MeasurableSet s) (hf : MemLp f p (μ.restrict s)) (hg : MemLp g p (μ.restrict s)) :
MemLp (s.piecewise f g) p μ

Alias of MeasureTheory.MemLp.piecewise.

theorem MeasureTheory.eLpNorm_restrict_eq_of_support_subset {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_7} [TopologicalSpace ε] [ENormedAddMonoid ε] {s : Set α} {f : αε} (hsf : Function.support f s) :
eLpNorm f p (μ.restrict s) = eLpNorm f p μ

For a function f with support in s, the Lᵖ norms of f with respect to μ and μ.restrict s are the same.

theorem MeasureTheory.MemLp.restrict {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_8} [ENorm ε] [TopologicalSpace ε] (s : Set α) {f : αε} (hf : MemLp f p μ) :
MemLp f p (μ.restrict s)
@[deprecated MeasureTheory.MemLp.restrict (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.restrict {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_8} [ENorm ε] [TopologicalSpace ε] (s : Set α) {f : αε} (hf : MemLp f p μ) :
MemLp f p (μ.restrict s)

Alias of MeasureTheory.MemLp.restrict.

theorem MeasureTheory.eLpNorm'_smul_measure {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {ε : Type u_8} [ENorm ε] {p : } (hp : 0 p) {f : αε} (c : ENNReal) :
eLpNorm' f p (c μ) = c ^ (1 / p) * eLpNorm' f p μ
@[simp]
theorem MeasureTheory.eLpNormEssSup_smul_measure {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {ε : Type u_8} [ENorm ε] {R : Type u_9} [Zero R] [SMulWithZero R ENNReal] [IsScalarTower R ENNReal ENNReal] [NoZeroSMulDivisors R ENNReal] {c : R} (hc : c 0) (f : αε) :
theorem MeasureTheory.eLpNorm_smul_measure_of_ne_zero {α : Type u_1} {m0 : MeasurableSpace α} {ε : Type u_8} [ENorm ε] {c : ENNReal} (hc : c 0) (f : αε) (p : ENNReal) (μ : Measure α) :
eLpNorm f p (c μ) = c ^ (1 / p).toReal eLpNorm f p μ

See eLpNorm_smul_measure_of_ne_zero' for a version with scalar multiplication by ℝ≥0.

theorem MeasureTheory.eLpNorm_smul_measure_of_ne_zero' {α : Type u_1} {m0 : MeasurableSpace α} {ε : Type u_8} [ENorm ε] {c : NNReal} (hc : c 0) (f : αε) (p : ENNReal) (μ : Measure α) :
eLpNorm f p (c μ) = c ^ p.toReal⁻¹ eLpNorm f p μ

See eLpNorm_smul_measure_of_ne_zero for a version with scalar multiplication by ℝ≥0∞.

theorem MeasureTheory.eLpNorm_smul_measure_of_ne_top {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {ε : Type u_8} [ENorm ε] {p : ENNReal} (hp_ne_top : p ) (f : αε) (c : ENNReal) :
eLpNorm f p (c μ) = c ^ (1 / p).toReal eLpNorm f p μ

See eLpNorm_smul_measure_of_ne_top' for a version with scalar multiplication by ℝ≥0.

theorem MeasureTheory.eLpNorm_smul_measure_of_ne_top' {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_8} [ENorm ε] (hp : p ) (c : NNReal) (f : αε) :
eLpNorm f p (c μ) = c ^ p.toReal⁻¹ eLpNorm f p μ

See eLpNorm_smul_measure_of_ne_top' for a version with scalar multiplication by ℝ≥0∞.

theorem MeasureTheory.eLpNorm_one_smul_measure {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup F] {f : αF} (c : ENNReal) :
eLpNorm f 1 (c μ) = c * eLpNorm f 1 μ
theorem MeasureTheory.MemLp.of_measure_le_smul {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_9} [TopologicalSpace ε] [ENormedAddMonoid ε] {μ' : Measure α} {c : ENNReal} (hc : c ) (hμ'_le : μ' c μ) {f : αε} (hf : MemLp f p μ) :
MemLp f p μ'
@[deprecated MeasureTheory.MemLp.of_measure_le_smul (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.of_measure_le_smul {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_9} [TopologicalSpace ε] [ENormedAddMonoid ε] {μ' : Measure α} {c : ENNReal} (hc : c ) (hμ'_le : μ' c μ) {f : αε} (hf : MemLp f p μ) :
MemLp f p μ'

Alias of MeasureTheory.MemLp.of_measure_le_smul.

theorem MeasureTheory.MemLp.smul_measure {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] {f : αF} {c : ENNReal} (hf : MemLp f p μ) (hc : c ) :
MemLp f p (c μ)
@[deprecated MeasureTheory.MemLp.smul_measure (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.smul_measure {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] {f : αF} {c : ENNReal} (hf : MemLp f p μ) (hc : c ) :
MemLp f p (c μ)

Alias of MeasureTheory.MemLp.smul_measure.

theorem MeasureTheory.eLpNorm_one_add_measure {α : Type u_1} {m0 : MeasurableSpace α} {ε : Type u_8} [ENorm ε] (f : αε) (μ ν : Measure α) :
eLpNorm f 1 (μ + ν) = eLpNorm f 1 μ + eLpNorm f 1 ν
theorem MeasureTheory.eLpNorm_le_add_measure_right {α : Type u_1} {m0 : MeasurableSpace α} {ε : Type u_8} [ENorm ε] (f : αε) (μ ν : Measure α) {p : ENNReal} :
eLpNorm f p μ eLpNorm f p (μ + ν)
theorem MeasureTheory.eLpNorm_le_add_measure_left {α : Type u_1} {m0 : MeasurableSpace α} {ε : Type u_8} [ENorm ε] (f : αε) (μ ν : Measure α) {p : ENNReal} :
eLpNorm f p ν eLpNorm f p (μ + ν)
theorem MeasureTheory.eLpNormEssSup_eq_iSup {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {ε : Type u_8} [ENorm ε] ( : ∀ (a : α), μ {a} 0) (f : αε) :
eLpNormEssSup f μ = ⨆ (a : α), f a‖ₑ
@[simp]
theorem MeasureTheory.eLpNormEssSup_count {α : Type u_1} {m0 : MeasurableSpace α} {ε : Type u_8} [ENorm ε] [MeasurableSingletonClass α] (f : αε) :
theorem MeasureTheory.MemLp.left_of_add_measure {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ ν : Measure α} {ε : Type u_8} [ENorm ε] [TopologicalSpace ε] {f : αε} (h : MemLp f p (μ + ν)) :
MemLp f p μ
@[deprecated MeasureTheory.MemLp.left_of_add_measure (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.left_of_add_measure {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ ν : Measure α} {ε : Type u_8} [ENorm ε] [TopologicalSpace ε] {f : αε} (h : MemLp f p (μ + ν)) :
MemLp f p μ

Alias of MeasureTheory.MemLp.left_of_add_measure.

theorem MeasureTheory.MemLp.right_of_add_measure {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ ν : Measure α} {ε : Type u_8} [ENorm ε] [TopologicalSpace ε] {f : αε} (h : MemLp f p (μ + ν)) :
MemLp f p ν
@[deprecated MeasureTheory.MemLp.right_of_add_measure (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.right_of_add_measure {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ ν : Measure α} {ε : Type u_8} [ENorm ε] [TopologicalSpace ε] {f : αε} (h : MemLp f p (μ + ν)) :
MemLp f p ν

Alias of MeasureTheory.MemLp.right_of_add_measure.

theorem MeasureTheory.MemLp.norm {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (h : MemLp f p μ) :
MemLp (fun (x : α) => f x) p μ
@[deprecated MeasureTheory.MemLp.norm (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.norm {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (h : MemLp f p μ) :
MemLp (fun (x : α) => f x) p μ

Alias of MeasureTheory.MemLp.norm.

theorem MeasureTheory.memLp_norm_iff {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (hf : AEStronglyMeasurable f μ) :
MemLp (fun (x : α) => f x) p μ MemLp f p μ
@[deprecated MeasureTheory.memLp_norm_iff (since := "2025-02-21")]
theorem MeasureTheory.memℒp_norm_iff {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (hf : AEStronglyMeasurable f μ) :
MemLp (fun (x : α) => f x) p μ MemLp f p μ

Alias of MeasureTheory.memLp_norm_iff.

theorem MeasureTheory.eLpNorm'_eq_zero_of_ae_zero {α : Type u_1} {m0 : MeasurableSpace α} {q : } {μ : Measure α} {ε : Type u_9} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} (hq0_lt : 0 < q) (hf_zero : f =ᶠ[ae μ] 0) :
eLpNorm' f q μ = 0
theorem MeasureTheory.eLpNorm'_eq_zero_of_ae_zero' {α : Type u_1} {m0 : MeasurableSpace α} {q : } {μ : Measure α} {ε : Type u_9} [TopologicalSpace ε] [ENormedAddMonoid ε] (hq0_ne : q 0) ( : μ 0) {f : αε} (hf_zero : f =ᶠ[ae μ] 0) :
eLpNorm' f q μ = 0
theorem MeasureTheory.ae_eq_zero_of_eLpNorm'_eq_zero {α : Type u_1} {m0 : MeasurableSpace α} {q : } {μ : Measure α} {ε : Type u_9} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} (hq0 : 0 q) (hf : AEStronglyMeasurable f μ) (h : eLpNorm' f q μ = 0) :
f =ᶠ[ae μ] 0
theorem MeasureTheory.eLpNorm'_eq_zero_iff {α : Type u_1} {m0 : MeasurableSpace α} {q : } {μ : Measure α} {ε : Type u_9} [TopologicalSpace ε] [ENormedAddMonoid ε] (hq0_lt : 0 < q) {f : αε} (hf : AEStronglyMeasurable f μ) :
eLpNorm' f q μ = 0 f =ᶠ[ae μ] 0
theorem MeasureTheory.enorm_ae_le_eLpNormEssSup {α : Type u_1} {ε : Type u_9} [TopologicalSpace ε] [ENormedAddMonoid ε] {x✝ : MeasurableSpace α} (f : αε) (μ : Measure α) :
@[deprecated MeasureTheory.enorm_ae_le_eLpNormEssSup (since := "2025-03-05")]
theorem MeasureTheory.coe_nnnorm_ae_le_eLpNormEssSup {α : Type u_1} {ε : Type u_9} [TopologicalSpace ε] [ENormedAddMonoid ε] {x✝ : MeasurableSpace α} (f : αε) (μ : Measure α) :

Alias of MeasureTheory.enorm_ae_le_eLpNormEssSup.

@[simp]
theorem MeasureTheory.eLpNormEssSup_eq_zero_iff {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {ε : Type u_9} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} :
eLpNormEssSup f μ = 0 f =ᶠ[ae μ] 0
theorem MeasureTheory.eLpNorm_eq_zero_iff {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (hf : AEStronglyMeasurable f μ) (h0 : p 0) :
eLpNorm f p μ = 0 f =ᶠ[ae μ] 0
theorem MeasureTheory.eLpNorm_eq_zero_of_ae_zero {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_9} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} (hf : f =ᶠ[ae μ] 0) :
eLpNorm f p μ = 0
theorem MeasureTheory.ae_le_eLpNormEssSup {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {ε : Type u_9} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} :
theorem MeasureTheory.eLpNormEssSup_lt_top_iff_isBoundedUnder {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup F] {f : αF} :
eLpNormEssSup f μ < Filter.IsBoundedUnder (fun (x1 x2 : NNReal) => x1 x2) (ae μ) fun (x : α) => f x‖₊
theorem MeasureTheory.meas_eLpNormEssSup_lt {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {ε : Type u_9} [TopologicalSpace ε] [ENormedAddMonoid ε] {f : αε} :
μ {y : α | eLpNormEssSup f μ < f y‖ₑ} = 0
theorem MeasureTheory.eLpNorm_lt_top_of_finite {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] {f : αF} [Finite α] [IsFiniteMeasure μ] :
eLpNorm f p μ <
@[simp]
theorem MeasureTheory.MemLp.of_discrete {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] {f : αF} [DiscreteMeasurableSpace α] [Finite α] [IsFiniteMeasure μ] :
MemLp f p μ
@[deprecated MeasureTheory.MemLp.of_discrete (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.of_discrete {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] {f : αF} [DiscreteMeasurableSpace α] [Finite α] [IsFiniteMeasure μ] :
MemLp f p μ

Alias of MeasureTheory.MemLp.of_discrete.

@[simp]
theorem MeasureTheory.eLpNorm_of_isEmpty {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {ε : Type u_9} [TopologicalSpace ε] [ENormedAddMonoid ε] [IsEmpty α] (f : αε) (p : ENNReal) :
eLpNorm f p μ = 0
theorem MeasureTheory.eLpNormEssSup_map_measure {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {ε : Type u_10} [TopologicalSpace ε] [ENormedAddMonoid ε] {β : Type u_11} { : MeasurableSpace β} {f : αβ} {g : βε} (hg : AEStronglyMeasurable g (Measure.map f μ)) (hf : AEMeasurable f μ) :
theorem MeasureTheory.eLpNorm_map_measure {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_10} [TopologicalSpace ε] [ENormedAddMonoid ε] {β : Type u_11} { : MeasurableSpace β} {f : αβ} {g : βε} (hg : AEStronglyMeasurable g (Measure.map f μ)) (hf : AEMeasurable f μ) :
eLpNorm g p (Measure.map f μ) = eLpNorm (g f) p μ
theorem MeasureTheory.memLp_map_measure_iff {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_10} [TopologicalSpace ε] [ENormedAddMonoid ε] {β : Type u_11} { : MeasurableSpace β} {f : αβ} {g : βε} (hg : AEStronglyMeasurable g (Measure.map f μ)) (hf : AEMeasurable f μ) :
MemLp g p (Measure.map f μ) MemLp (g f) p μ
@[deprecated MeasureTheory.memLp_map_measure_iff (since := "2025-02-21")]
theorem MeasureTheory.memℒp_map_measure_iff {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_10} [TopologicalSpace ε] [ENormedAddMonoid ε] {β : Type u_11} { : MeasurableSpace β} {f : αβ} {g : βε} (hg : AEStronglyMeasurable g (Measure.map f μ)) (hf : AEMeasurable f μ) :
MemLp g p (Measure.map f μ) MemLp (g f) p μ

Alias of MeasureTheory.memLp_map_measure_iff.

theorem MeasureTheory.MemLp.comp_of_map {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_10} [TopologicalSpace ε] [ENormedAddMonoid ε] {β : Type u_11} { : MeasurableSpace β} {f : αβ} {g : βε} (hg : MemLp g p (Measure.map f μ)) (hf : AEMeasurable f μ) :
MemLp (g f) p μ
@[deprecated MeasureTheory.MemLp.comp_of_map (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.comp_of_map {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_10} [TopologicalSpace ε] [ENormedAddMonoid ε] {β : Type u_11} { : MeasurableSpace β} {f : αβ} {g : βε} (hg : MemLp g p (Measure.map f μ)) (hf : AEMeasurable f μ) :
MemLp (g f) p μ

Alias of MeasureTheory.MemLp.comp_of_map.

theorem MeasureTheory.eLpNorm_comp_measurePreserving {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_10} [TopologicalSpace ε] [ENormedAddMonoid ε] {β : Type u_11} { : MeasurableSpace β} {f : αβ} {g : βε} {ν : Measure β} (hg : AEStronglyMeasurable g ν) (hf : MeasurePreserving f μ ν) :
eLpNorm (g f) p μ = eLpNorm g p ν
theorem MeasureTheory.AEEqFun.eLpNorm_compMeasurePreserving {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {β : Type u_11} { : MeasurableSpace β} {f : αβ} {ν : Measure β} (g : β →ₘ[ν] E) (hf : MeasurePreserving f μ ν) :
eLpNorm (↑(g.compMeasurePreserving f hf)) p μ = eLpNorm (↑g) p ν
theorem MeasureTheory.MemLp.comp_measurePreserving {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_10} [TopologicalSpace ε] [ENormedAddMonoid ε] {β : Type u_11} { : MeasurableSpace β} {f : αβ} {g : βε} {ν : Measure β} (hg : MemLp g p ν) (hf : MeasurePreserving f μ ν) :
MemLp (g f) p μ
@[deprecated MeasureTheory.MemLp.comp_measurePreserving (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.comp_measurePreserving {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {ε : Type u_10} [TopologicalSpace ε] [ENormedAddMonoid ε] {β : Type u_11} { : MeasurableSpace β} {f : αβ} {g : βε} {ν : Measure β} (hg : MemLp g p ν) (hf : MeasurePreserving f μ ν) :
MemLp (g f) p μ

Alias of MeasureTheory.MemLp.comp_measurePreserving.

theorem MeasurableEmbedding.eLpNorm_map_measure {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {ε : Type u_10} [TopologicalSpace ε] [ENormedAddMonoid ε] {β : Type u_11} { : MeasurableSpace β} {f : αβ} {g : βε} (hf : MeasurableEmbedding f) :
theorem MeasurableEmbedding.memLp_map_measure_iff {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {ε : Type u_10} [TopologicalSpace ε] [ENormedAddMonoid ε] {β : Type u_11} { : MeasurableSpace β} {f : αβ} {g : βε} (hf : MeasurableEmbedding f) :
@[deprecated MeasurableEmbedding.memLp_map_measure_iff (since := "2025-02-21")]
theorem MeasurableEmbedding.memℒp_map_measure_iff {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {ε : Type u_10} [TopologicalSpace ε] [ENormedAddMonoid ε] {β : Type u_11} { : MeasurableSpace β} {f : αβ} {g : βε} (hf : MeasurableEmbedding f) :

Alias of MeasurableEmbedding.memLp_map_measure_iff.

theorem MeasurableEquiv.memLp_map_measure_iff {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {ε : Type u_10} [TopologicalSpace ε] [ENormedAddMonoid ε] {β : Type u_11} { : MeasurableSpace β} {g : βε} (f : α ≃ᵐ β) :
@[deprecated MeasurableEquiv.memLp_map_measure_iff (since := "2025-02-21")]
theorem MeasurableEquiv.memℒp_map_measure_iff {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {ε : Type u_10} [TopologicalSpace ε] [ENormedAddMonoid ε] {β : Type u_11} { : MeasurableSpace β} {g : βε} (f : α ≃ᵐ β) :

Alias of MeasurableEquiv.memLp_map_measure_iff.

theorem MeasureTheory.eLpNorm'_le_nnreal_smul_eLpNorm'_of_ae_le_mul {α : Type u_1} {F : Type u_5} {G : Type u_6} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} {c : NNReal} (h : ∀ᵐ (x : α) μ, f x‖₊ c * g x‖₊) {p : } (hp : 0 < p) :
eLpNorm' f p μ c eLpNorm' g p μ
theorem MeasureTheory.eLpNormEssSup_le_nnreal_smul_eLpNormEssSup_of_ae_le_mul {α : Type u_1} {F : Type u_5} {G : Type u_6} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} {c : NNReal} (h : ∀ᵐ (x : α) μ, f x‖₊ c * g x‖₊) :
theorem MeasureTheory.eLpNorm_le_nnreal_smul_eLpNorm_of_ae_le_mul {α : Type u_1} {F : Type u_5} {G : Type u_6} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} {c : NNReal} (h : ∀ᵐ (x : α) μ, f x‖₊ c * g x‖₊) (p : ENNReal) :
eLpNorm f p μ c eLpNorm g p μ
theorem MeasureTheory.eLpNorm_eq_zero_and_zero_of_ae_le_mul_neg {α : Type u_1} {F : Type u_5} {G : Type u_6} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} {c : } (h : ∀ᵐ (x : α) μ, f x c * g x) (hc : c < 0) (p : ENNReal) :
eLpNorm f p μ = 0 eLpNorm g p μ = 0

When c is negative, ‖f x‖ ≤ c * ‖g x‖ is nonsense and forces both f and g to have an eLpNorm of 0.

theorem MeasureTheory.eLpNorm_le_mul_eLpNorm_of_ae_le_mul {α : Type u_1} {F : Type u_5} {G : Type u_6} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} {c : } (h : ∀ᵐ (x : α) μ, f x c * g x) (p : ENNReal) :
theorem MeasureTheory.MemLp.of_nnnorm_le_mul {α : Type u_1} {E : Type u_4} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} {c : NNReal} (hg : MemLp g p μ) (hf : AEStronglyMeasurable f μ) (hfg : ∀ᵐ (x : α) μ, f x‖₊ c * g x‖₊) :
MemLp f p μ
@[deprecated MeasureTheory.MemLp.of_nnnorm_le_mul (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.of_nnnorm_le_mul {α : Type u_1} {E : Type u_4} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} {c : NNReal} (hg : MemLp g p μ) (hf : AEStronglyMeasurable f μ) (hfg : ∀ᵐ (x : α) μ, f x‖₊ c * g x‖₊) :
MemLp f p μ

Alias of MeasureTheory.MemLp.of_nnnorm_le_mul.

theorem MeasureTheory.MemLp.of_le_mul {α : Type u_1} {E : Type u_4} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} {c : } (hg : MemLp g p μ) (hf : AEStronglyMeasurable f μ) (hfg : ∀ᵐ (x : α) μ, f x c * g x) :
MemLp f p μ
@[deprecated MeasureTheory.MemLp.of_le_mul (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.of_le_mul {α : Type u_1} {E : Type u_4} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} {c : } (hg : MemLp g p μ) (hf : AEStronglyMeasurable f μ) (hfg : ∀ᵐ (x : α) μ, f x c * g x) :
MemLp f p μ

Alias of MeasureTheory.MemLp.of_le_mul.

Bounded actions by normed rings #

In this section we show inequalities on the norm.

theorem MeasureTheory.eLpNorm'_const_smul_le {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {q : } {μ : Measure α} [NormedAddCommGroup F] {𝕜 : Type u_10} [NormedRing 𝕜] [MulActionWithZero 𝕜 F] [IsBoundedSMul 𝕜 F] {c : 𝕜} {f : αF} (hq : 0 < q) :
eLpNorm' (c f) q μ c‖ₑ * eLpNorm' f q μ
theorem MeasureTheory.eLpNormEssSup_const_smul_le {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup F] {𝕜 : Type u_10} [NormedRing 𝕜] [MulActionWithZero 𝕜 F] [IsBoundedSMul 𝕜 F] {c : 𝕜} {f : αF} :
theorem MeasureTheory.eLpNorm_const_smul_le {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] {𝕜 : Type u_10} [NormedRing 𝕜] [MulActionWithZero 𝕜 F] [IsBoundedSMul 𝕜 F] {c : 𝕜} {f : αF} :
eLpNorm (c f) p μ c‖ₑ * eLpNorm f p μ
theorem MeasureTheory.MemLp.const_smul {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] {𝕜 : Type u_10} [NormedRing 𝕜] [MulActionWithZero 𝕜 F] [IsBoundedSMul 𝕜 F] {f : αF} (hf : MemLp f p μ) (c : 𝕜) :
MemLp (c f) p μ
@[deprecated MeasureTheory.MemLp.const_smul (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.const_smul {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] {𝕜 : Type u_10} [NormedRing 𝕜] [MulActionWithZero 𝕜 F] [IsBoundedSMul 𝕜 F] {f : αF} (hf : MemLp f p μ) (c : 𝕜) :
MemLp (c f) p μ

Alias of MeasureTheory.MemLp.const_smul.

theorem MeasureTheory.MemLp.const_mul {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {𝕜 : Type u_10} [NormedRing 𝕜] {f : α𝕜} (hf : MemLp f p μ) (c : 𝕜) :
MemLp (fun (x : α) => c * f x) p μ
@[deprecated MeasureTheory.MemLp.const_mul (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.const_mul {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {𝕜 : Type u_10} [NormedRing 𝕜] {f : α𝕜} (hf : MemLp f p μ) (c : 𝕜) :
MemLp (fun (x : α) => c * f x) p μ

Alias of MeasureTheory.MemLp.const_mul.

Bounded actions by normed division rings #

The inequalities in the previous section are now tight.

theorem MeasureTheory.eLpNorm'_const_smul {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {q : } {μ : Measure α} [NormedAddCommGroup F] {𝕜 : Type u_10} [NormedDivisionRing 𝕜] [Module 𝕜 F] [IsBoundedSMul 𝕜 F] {f : αF} (c : 𝕜) (hq_pos : 0 < q) :
eLpNorm' (c f) q μ = c‖ₑ * eLpNorm' f q μ
theorem MeasureTheory.eLpNormEssSup_const_smul {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup F] {𝕜 : Type u_10} [NormedDivisionRing 𝕜] [Module 𝕜 F] [IsBoundedSMul 𝕜 F] (c : 𝕜) (f : αF) :
theorem MeasureTheory.eLpNorm_const_smul {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} [NormedAddCommGroup F] {𝕜 : Type u_10} [NormedDivisionRing 𝕜] [Module 𝕜 F] [IsBoundedSMul 𝕜 F] (c : 𝕜) (f : αF) (p : ENNReal) (μ : Measure α) :
eLpNorm (c f) p μ = c‖ₑ * eLpNorm f p μ
theorem MeasureTheory.eLpNorm_nsmul {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] [NormedSpace F] (n : ) (f : αF) :
eLpNorm (n f) p μ = n * eLpNorm f p μ
theorem MeasureTheory.le_eLpNorm_of_bddBelow {α : Type u_1} {F : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] (hp : p 0) (hp' : p ) {f : αF} (C : NNReal) {s : Set α} (hs : MeasurableSet s) (hf : ∀ᵐ (x : α) μ, x sC f x‖₊) :
C μ s ^ (1 / p.toReal) eLpNorm f p μ
@[simp]
theorem MeasureTheory.eLpNorm_conj {α : Type u_1} {m0 : MeasurableSpace α} {𝕜 : Type u_10} [RCLike 𝕜] (f : α𝕜) (p : ENNReal) (μ : Measure α) :
eLpNorm ((starRingEnd (α𝕜)) f) p μ = eLpNorm f p μ
theorem MeasureTheory.MemLp.re {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {𝕜 : Type u_10} [RCLike 𝕜] {f : α𝕜} (hf : MemLp f p μ) :
MemLp (fun (x : α) => RCLike.re (f x)) p μ
@[deprecated MeasureTheory.MemLp.re (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.re {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {𝕜 : Type u_10} [RCLike 𝕜] {f : α𝕜} (hf : MemLp f p μ) :
MemLp (fun (x : α) => RCLike.re (f x)) p μ

Alias of MeasureTheory.MemLp.re.

theorem MeasureTheory.MemLp.im {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {𝕜 : Type u_10} [RCLike 𝕜] {f : α𝕜} (hf : MemLp f p μ) :
MemLp (fun (x : α) => RCLike.im (f x)) p μ
@[deprecated MeasureTheory.MemLp.im (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.im {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {𝕜 : Type u_10} [RCLike 𝕜] {f : α𝕜} (hf : MemLp f p μ) :
MemLp (fun (x : α) => RCLike.im (f x)) p μ

Alias of MeasureTheory.MemLp.im.

theorem MeasureTheory.ae_bdd_liminf_atTop_rpow_of_eLpNorm_bdd {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [MeasurableSpace E] [OpensMeasurableSpace E] {R : NNReal} {p : ENNReal} {f : αE} (hfmeas : ∀ (n : ), Measurable (f n)) (hbdd : ∀ (n : ), eLpNorm (f n) p μ R) :
∀ᵐ (x : α) μ, Filter.liminf (fun (n : ) => f n x‖ₑ ^ p.toReal) Filter.atTop <
theorem MeasureTheory.ae_bdd_liminf_atTop_of_eLpNorm_bdd {α : Type u_1} {E : Type u_4} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [MeasurableSpace E] [OpensMeasurableSpace E] {R : NNReal} {p : ENNReal} (hp : p 0) {f : αE} (hfmeas : ∀ (n : ), Measurable (f n)) (hbdd : ∀ (n : ), eLpNorm (f n) p μ R) :
∀ᵐ (x : α) μ, Filter.liminf (fun (n : ) => f n x‖ₑ) Filter.atTop <

A continuous function with compact support belongs to L^∞. See Continuous.memLp_of_hasCompactSupport for a version for L^p.

@[deprecated Continuous.memLp_top_of_hasCompactSupport (since := "2025-02-21")]

Alias of Continuous.memLp_top_of_hasCompactSupport.


A continuous function with compact support belongs to L^∞. See Continuous.memLp_of_hasCompactSupport for a version for L^p.

theorem MeasureTheory.MemLp.exists_eLpNorm_indicator_compl_lt {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {β : Type u_10} [NormedAddCommGroup β] (hp_top : p ) {f : αβ} (hf : MemLp f p μ) {ε : ENNReal} ( : ε 0) :
∃ (s : Set α), MeasurableSet s μ s < eLpNorm (s.indicator f) p μ < ε

A single function that is MemLp f p μ is tight with respect to μ.

@[deprecated MeasureTheory.MemLp.exists_eLpNorm_indicator_compl_lt (since := "2025-02-21")]
theorem MeasureTheory.Memℒp.exists_eLpNorm_indicator_compl_lt {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {β : Type u_10} [NormedAddCommGroup β] (hp_top : p ) {f : αβ} (hf : MemLp f p μ) {ε : ENNReal} ( : ε 0) :
∃ (s : Set α), MeasurableSet s μ s < eLpNorm (s.indicator f) p μ < ε

Alias of MeasureTheory.MemLp.exists_eLpNorm_indicator_compl_lt.


A single function that is MemLp f p μ is tight with respect to μ.