Documentation

Mathlib.MeasureTheory.Function.LpSeminorm.SMul

Scalar multiplication on ℒp space #

Bounded actions by normed rings #

In this section we show inequalities on the norm.

theorem MeasureTheory.eLpNorm'_const_smul_le {α : Type u_1} {F : Type u_2} {m : MeasurableSpace α} {q : } {μ : Measure α} [NormedAddCommGroup F] {f : αF} {𝕜 : Type u_3} [NormedRing 𝕜] [MulActionWithZero 𝕜 F] [IsBoundedSMul 𝕜 F] {c : 𝕜} (hq : 0 < q) :
eLpNorm' (c f) q μ c‖ₑ * eLpNorm' f q μ
theorem MeasureTheory.eLpNormEssSup_const_smul_le {α : Type u_1} {F : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup F] {f : αF} {𝕜 : Type u_3} [NormedRing 𝕜] [MulActionWithZero 𝕜 F] [IsBoundedSMul 𝕜 F] {c : 𝕜} :
theorem MeasureTheory.eLpNorm_const_smul_le {α : Type u_1} {F : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] {f : αF} {𝕜 : Type u_3} [NormedRing 𝕜] [MulActionWithZero 𝕜 F] [IsBoundedSMul 𝕜 F] {c : 𝕜} :
eLpNorm (c f) p μ c‖ₑ * eLpNorm f p μ
theorem MeasureTheory.MemLp.const_smul {α : Type u_1} {F : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] {f : αF} {𝕜 : Type u_3} [NormedRing 𝕜] [MulActionWithZero 𝕜 F] [IsBoundedSMul 𝕜 F] (hf : MemLp f p μ) (c : 𝕜) :
MemLp (c f) p μ
theorem MeasureTheory.MemLp.const_mul {α : Type u_1} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {𝕜 : Type u_3} [NormedRing 𝕜] {f : α𝕜} (hf : MemLp f p μ) (c : 𝕜) :
MemLp (fun (x : α) => c * f x) p μ
theorem MeasureTheory.MemLp.mul_const {α : Type u_1} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {𝕜 : Type u_3} [NormedRing 𝕜] {f : α𝕜} (hf : MemLp f p μ) (c : 𝕜) :
MemLp (fun (x : α) => f x * c) p μ
theorem MeasureTheory.eLpNorm'_const_smul_le' {α : Type u_1} {m : MeasurableSpace α} {q : } {μ : Measure α} {𝕜 : Type u_3} [NormedRing 𝕜] {ε : Type u_4} [TopologicalSpace ε] [ESeminormedAddMonoid ε] [SMul 𝕜 ε] [ENormSMulClass 𝕜 ε] {c : 𝕜} {f : αε} (hq : 0 < q) :
eLpNorm' (c f) q μ c‖ₑ * eLpNorm' f q μ
theorem MeasureTheory.eLpNormEssSup_const_smul_le' {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {𝕜 : Type u_3} [NormedRing 𝕜] {ε : Type u_4} [TopologicalSpace ε] [ESeminormedAddMonoid ε] [SMul 𝕜 ε] [ENormSMulClass 𝕜 ε] {c : 𝕜} {f : αε} :
theorem MeasureTheory.eLpNorm_const_smul_le' {α : Type u_1} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {𝕜 : Type u_3} [NormedRing 𝕜] {ε : Type u_4} [TopologicalSpace ε] [ESeminormedAddMonoid ε] [SMul 𝕜 ε] [ENormSMulClass 𝕜 ε] {c : 𝕜} {f : αε} :
eLpNorm (c f) p μ c‖ₑ * eLpNorm f p μ
theorem MeasureTheory.MemLp.const_smul' {α : Type u_1} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {𝕜 : Type u_3} [NormedRing 𝕜] {ε : Type u_4} [TopologicalSpace ε] [ESeminormedAddMonoid ε] [SMul 𝕜 ε] [ENormSMulClass 𝕜 ε] {f : αε} [ContinuousConstSMul 𝕜 ε] (hf : MemLp f p μ) (c : 𝕜) :
MemLp (c f) p μ
theorem MeasureTheory.MemLp.const_mul' {α : Type u_1} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {𝕜 : Type u_3} [NormedRing 𝕜] {f : α𝕜} (hf : MemLp f p μ) (c : 𝕜) :
MemLp (fun (x : α) => c * f x) p μ

Bounded actions by normed division rings #

The inequalities in the previous section are now tight.

TODO: do these results hold for any NormedRing assuming NormSMulClass?

theorem MeasureTheory.eLpNorm'_const_smul {α : Type u_1} {F : Type u_2} {m : MeasurableSpace α} {q : } {μ : Measure α} [NormedAddCommGroup F] {𝕜 : Type u_3} [NormedDivisionRing 𝕜] [Module 𝕜 F] [NormSMulClass 𝕜 F] {f : αF} (c : 𝕜) (hq_pos : 0 < q) :
eLpNorm' (c f) q μ = c‖ₑ * eLpNorm' f q μ
theorem MeasureTheory.eLpNormEssSup_const_smul {α : Type u_1} {F : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup F] {𝕜 : Type u_3} [NormedDivisionRing 𝕜] [Module 𝕜 F] [NormSMulClass 𝕜 F] (c : 𝕜) (f : αF) :
theorem MeasureTheory.eLpNorm_const_smul {α : Type u_1} {F : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup F] {𝕜 : Type u_3} [NormedDivisionRing 𝕜] [Module 𝕜 F] [NormSMulClass 𝕜 F] (c : 𝕜) (f : αF) (p : ENNReal) (μ : Measure α) :
eLpNorm (c f) p μ = c‖ₑ * eLpNorm f p μ
theorem MeasureTheory.eLpNorm_nsmul {α : Type u_1} {F : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] [NormedSpace F] (n : ) (f : αF) :
eLpNorm (n f) p μ = n * eLpNorm f p μ