Documentation

Mathlib.MeasureTheory.Function.LpSeminorm.Trim

Lp seminorm with respect to trimmed measure #

In this file we prove basic properties of the Lp-seminorm of a function with respect to the restriction of a measure to a sub-σ-algebra.

theorem MeasureTheory.eLpNorm'_trim {α : Type u_1} {E : Type u_2} {m m0 : MeasurableSpace α} {q : } {μ : Measure α} [NormedAddCommGroup E] (hm : m m0) {f : αE} (hf : StronglyMeasurable f) :
eLpNorm' f q (μ.trim hm) = eLpNorm' f q μ
@[deprecated MeasureTheory.eLpNorm'_trim (since := "2024-07-27")]
theorem MeasureTheory.snorm'_trim {α : Type u_1} {E : Type u_2} {m m0 : MeasurableSpace α} {q : } {μ : Measure α} [NormedAddCommGroup E] (hm : m m0) {f : αE} (hf : StronglyMeasurable f) :
eLpNorm' f q (μ.trim hm) = eLpNorm' f q μ

Alias of MeasureTheory.eLpNorm'_trim.

theorem MeasureTheory.limsup_trim {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} (hm : m m0) {f : αENNReal} (hf : Measurable f) :
Filter.limsup f (ae (μ.trim hm)) = Filter.limsup f (ae μ)
theorem MeasureTheory.essSup_trim {α : Type u_1} {m m0 : MeasurableSpace α} {μ : Measure α} (hm : m m0) {f : αENNReal} (hf : Measurable f) :
essSup f (μ.trim hm) = essSup f μ
theorem MeasureTheory.eLpNormEssSup_trim {α : Type u_1} {E : Type u_2} {m m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] (hm : m m0) {f : αE} (hf : StronglyMeasurable f) :
eLpNormEssSup f (μ.trim hm) = eLpNormEssSup f μ
@[deprecated MeasureTheory.eLpNormEssSup_trim (since := "2024-07-27")]
theorem MeasureTheory.snormEssSup_trim {α : Type u_1} {E : Type u_2} {m m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] (hm : m m0) {f : αE} (hf : StronglyMeasurable f) :
eLpNormEssSup f (μ.trim hm) = eLpNormEssSup f μ

Alias of MeasureTheory.eLpNormEssSup_trim.

theorem MeasureTheory.eLpNorm_trim {α : Type u_1} {E : Type u_2} {m m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (hm : m m0) {f : αE} (hf : StronglyMeasurable f) :
eLpNorm f p (μ.trim hm) = eLpNorm f p μ
@[deprecated MeasureTheory.eLpNorm_trim (since := "2024-07-27")]
theorem MeasureTheory.snorm_trim {α : Type u_1} {E : Type u_2} {m m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (hm : m m0) {f : αE} (hf : StronglyMeasurable f) :
eLpNorm f p (μ.trim hm) = eLpNorm f p μ

Alias of MeasureTheory.eLpNorm_trim.

theorem MeasureTheory.eLpNorm_trim_ae {α : Type u_1} {E : Type u_2} {m m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (hm : m m0) {f : αE} (hf : AEStronglyMeasurable f (μ.trim hm)) :
eLpNorm f p (μ.trim hm) = eLpNorm f p μ
@[deprecated MeasureTheory.eLpNorm_trim_ae (since := "2024-07-27")]
theorem MeasureTheory.snorm_trim_ae {α : Type u_1} {E : Type u_2} {m m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (hm : m m0) {f : αE} (hf : AEStronglyMeasurable f (μ.trim hm)) :
eLpNorm f p (μ.trim hm) = eLpNorm f p μ

Alias of MeasureTheory.eLpNorm_trim_ae.

theorem MeasureTheory.memℒp_of_memℒp_trim {α : Type u_1} {E : Type u_2} {m m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (hm : m m0) {f : αE} (hf : Memℒp f p (μ.trim hm)) :
Memℒp f p μ