Documentation

Mathlib.MeasureTheory.Group.AEStabilizer

A.e. stabilizer of a set #

In this file we define the a.e. stabilizer of a set under a measure preserving group action.

The a.e. stabilizer MulAction.aestabilizer G μ s of a set s is the set of the elements g : G such that s is a.e.-invariant under (g • ·).

For a measure preserving group action, this set is a subgroup of G. If the set is null or conull, then this subgroup is the whole group. The converse is true for an ergodic action and a null-measurable set.

Implementation notes #

We define the a.e. stabilizer as a bundled Subgroup, thus we do not deal with monoid actions.

Also, many lemmas in this file are true for a quasi measure-preserving action, but we don't have the corresponding typeclass.

def MulAction.aestabilizer (G : Type u_1) {α : Type u_2} [Group G] [MulAction G α] {x✝ : MeasurableSpace α} (μ : MeasureTheory.Measure α) [MeasureTheory.SMulInvariantMeasure G α μ] (s : Set α) :

A.e. stabilizer of a set under a group action.

Equations
Instances For
    def AddAction.aestabilizer (G : Type u_1) {α : Type u_2} [AddGroup G] [AddAction G α] {x✝ : MeasurableSpace α} (μ : MeasureTheory.Measure α) [MeasureTheory.VAddInvariantMeasure G α μ] (s : Set α) :

    A.e. stabilizer of a set under an additive group action.

    Equations
    Instances For
      @[simp]
      theorem AddAction.coe_aestabilizer (G : Type u_1) {α : Type u_2} [AddGroup G] [AddAction G α] {x✝ : MeasurableSpace α} (μ : MeasureTheory.Measure α) [MeasureTheory.VAddInvariantMeasure G α μ] (s : Set α) :
      (aestabilizer G μ s) = {g : G | g +ᵥ s =ᵐ[μ] s}
      @[simp]
      theorem MulAction.coe_aestabilizer (G : Type u_1) {α : Type u_2} [Group G] [MulAction G α] {x✝ : MeasurableSpace α} (μ : MeasureTheory.Measure α) [MeasureTheory.SMulInvariantMeasure G α μ] (s : Set α) :
      (aestabilizer G μ s) = {g : G | g s =ᵐ[μ] s}
      @[simp]
      theorem MulAction.mem_aestabilizer {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {x✝ : MeasurableSpace α} {μ : MeasureTheory.Measure α} [MeasureTheory.SMulInvariantMeasure G α μ] {g : G} {s : Set α} :
      g aestabilizer G μ s g s =ᵐ[μ] s
      @[simp]
      theorem AddAction.mem_aestabilizer {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {x✝ : MeasurableSpace α} {μ : MeasureTheory.Measure α} [MeasureTheory.VAddInvariantMeasure G α μ] {g : G} {s : Set α} :
      g aestabilizer G μ s g +ᵥ s =ᵐ[μ] s
      @[simp]
      theorem MulAction.aestabilizer_congr {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {x✝ : MeasurableSpace α} {μ : MeasureTheory.Measure α} [MeasureTheory.SMulInvariantMeasure G α μ] {s t : Set α} (h : s =ᵐ[μ] t) :
      theorem AddAction.aestabilizer_congr {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {x✝ : MeasurableSpace α} {μ : MeasureTheory.Measure α} [MeasureTheory.VAddInvariantMeasure G α μ] {s t : Set α} (h : s =ᵐ[μ] t) :
      theorem MeasureTheory.smul_ae_eq_self_of_mem_zpowers {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {x✝ : MeasurableSpace α} {μ : Measure α} [SMulInvariantMeasure G α μ] {x y : G} {s : Set α} (hs : x s =ᶠ[ae μ] s) (hy : y Subgroup.zpowers x) :
      y s =ᶠ[ae μ] s
      theorem MeasureTheory.vadd_ae_eq_self_of_mem_zmultiples {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {x✝ : MeasurableSpace α} {μ : Measure α} [VAddInvariantMeasure G α μ] {x y : G} {s : Set α} (hs : x +ᵥ s =ᶠ[ae μ] s) (hy : y AddSubgroup.zmultiples x) :
      y +ᵥ s =ᶠ[ae μ] s
      theorem MeasureTheory.inv_smul_ae_eq_self {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {x✝ : MeasurableSpace α} {μ : Measure α} [SMulInvariantMeasure G α μ] {x : G} {s : Set α} (hs : x s =ᶠ[ae μ] s) :
      theorem MeasureTheory.neg_vadd_ae_eq_self {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {x✝ : MeasurableSpace α} {μ : Measure α} [VAddInvariantMeasure G α μ] {x : G} {s : Set α} (hs : x +ᵥ s =ᶠ[ae μ] s) :
      -x +ᵥ s =ᶠ[ae μ] s