Extensionality of finite measures #
The main Result is ext_of_forall_mem_subalgebra_integral_eq_of_pseudoEMetric_complete_countable
:
Let A
be a StarSubalgebra of C(E, 𝕜)
that separates points and whose elements are bounded. If
the integrals of all elements A
with respect to two finite measures P, P'
coincide, then the
measures coincide. In other words: If a Subalgebra separates points, it separates finite measures.
theorem
MeasureTheory.ext_of_forall_mem_subalgebra_integral_eq_of_pseudoEMetric_complete_countable
{E : Type u_1}
{𝕜 : Type u_2}
[RCLike 𝕜]
[MeasurableSpace E]
[PseudoEMetricSpace E]
[BorelSpace E]
[CompleteSpace E]
[SecondCountableTopology E]
{P P' : Measure E}
[IsFiniteMeasure P]
[IsFiniteMeasure P']
{A : StarSubalgebra 𝕜 (BoundedContinuousFunction E 𝕜)}
(hA : (StarSubalgebra.map (BoundedContinuousFunction.toContinuousMapStarₐ 𝕜) A).SeparatesPoints)
(heq : ∀ g ∈ A, ∫ (x : E), g x ∂P = ∫ (x : E), g x ∂P')
:
theorem
MeasureTheory.ext_of_forall_mem_subalgebra_integral_eq_of_polish
{E : Type u_1}
{𝕜 : Type u_2}
[RCLike 𝕜]
[MeasurableSpace E]
[TopologicalSpace E]
[PolishSpace E]
[BorelSpace E]
{P P' : Measure E}
[IsFiniteMeasure P]
[IsFiniteMeasure P']
{A : StarSubalgebra 𝕜 (BoundedContinuousFunction E 𝕜)}
(hA : (StarSubalgebra.map (BoundedContinuousFunction.toContinuousMapStarₐ 𝕜) A).SeparatesPoints)
(heq : ∀ g ∈ A, ∫ (x : E), g x ∂P = ∫ (x : E), g x ∂P')
: