Documentation

Mathlib.MeasureTheory.Measure.FiniteMeasurePi

Products of finite measures and probability measures #

This file introduces finite products of finite measures and probability measures. The constructions are obtained from special cases of products of general measures. Taking products nevertheless has specific properties in the cases of finite measures and probability measures, notably the fact that the product measures depend continuously on their factors in the topology of weak convergence when the underlying space is metrizable and separable.

Main definitions #

Main results #

MeasureTheory.ProbabilityMeasure.continuous_pi: the product probability measure depends continuously on the factors.

noncomputable def MeasureTheory.FiniteMeasure.pi {ι : Type u_1} {α : ιType u_2} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → FiniteMeasure (α i)) :
FiniteMeasure ((i : ι) → α i)

The product of finitely many finite measures.

Equations
Instances For
    @[simp]
    theorem MeasureTheory.FiniteMeasure.toMeasure_pi {ι : Type u_1} {α : ιType u_2} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → FiniteMeasure (α i)) :
    (pi μ) = Measure.pi fun (i : ι) => (μ i)
    @[simp]
    theorem MeasureTheory.FiniteMeasure.pi_pi {ι : Type u_1} {α : ιType u_2} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → FiniteMeasure (α i)) (s : (i : ι) → Set (α i)) :
    (pi μ) (Set.univ.pi s) = i : ι, (μ i) (s i)
    @[simp]
    theorem MeasureTheory.FiniteMeasure.mass_pi {ι : Type u_1} {α : ιType u_2} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → FiniteMeasure (α i)) :
    (pi μ).mass = i : ι, (μ i).mass
    theorem MeasureTheory.FiniteMeasure.pi_map_pi {ι : Type u_1} {α : ιType u_2} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → FiniteMeasure (α i)) {β : ιType u_3} [(i : ι) → MeasurableSpace (β i)] {f : (i : ι) → α iβ i} (f_mble : ∀ (i : ι), AEMeasurable (f i) (μ i)) :
    ((pi μ).map fun (x : (i : ι) → α i) (i : ι) => f i (x i)) = pi fun (i : ι) => (μ i).map (f i)
    noncomputable def MeasureTheory.ProbabilityMeasure.pi {ι : Type u_1} {α : ιType u_2} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → ProbabilityMeasure (α i)) :
    ProbabilityMeasure ((i : ι) → α i)

    The product of finitely many probability measures.

    Equations
    Instances For
      @[simp]
      theorem MeasureTheory.ProbabilityMeasure.toMeasure_pi {ι : Type u_1} {α : ιType u_2} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → ProbabilityMeasure (α i)) :
      (pi μ) = Measure.pi fun (i : ι) => (μ i)
      @[simp]
      theorem MeasureTheory.ProbabilityMeasure.pi_pi {ι : Type u_1} {α : ιType u_2} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → ProbabilityMeasure (α i)) (s : (i : ι) → Set (α i)) :
      (pi μ) (Set.univ.pi s) = i : ι, (μ i) (s i)
      theorem MeasureTheory.ProbabilityMeasure.continuous_pi {ι : Type u_1} {α : ιType u_2} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] [(i : ι) → TopologicalSpace (α i)] [∀ (i : ι), SecondCountableTopology (α i)] [∀ (i : ι), TopologicalSpace.PseudoMetrizableSpace (α i)] [∀ (i : ι), OpensMeasurableSpace (α i)] :
      Continuous fun (μ : (i : ι) → ProbabilityMeasure (α i)) => pi μ

      The map associating to finitely many probability measures their product is a continuous map.