Documentation

Mathlib.MeasureTheory.Measure.LevyProkhorovMetric

The Lévy-Prokhorov distance on spaces of finite measures and probability measures #

Main definitions #

Main results #

Todo #

Tags #

finite measure, probability measure, weak convergence, convergence in distribution, metrizability

Lévy-Prokhorov metric #

The Lévy-Prokhorov edistance between measures: d(μ,ν) = inf {r ≥ 0 | ∀ B, μ B ≤ ν Bᵣ + r ∧ ν B ≤ μ Bᵣ + r}.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem MeasureTheory.meas_le_of_le_of_forall_le_meas_thickening_add {Ω : Type u_2} [MeasurableSpace Ω] [PseudoEMetricSpace Ω] {ε₁ : ENNReal} {ε₂ : ENNReal} (μ : MeasureTheory.Measure Ω) (ν : MeasureTheory.Measure Ω) (h_le : ε₁ ε₂) {B : Set Ω} (hε₁ : μ B ν (Metric.thickening ε₁.toReal B) + ε₁) :
    μ B ν (Metric.thickening ε₂.toReal B) + ε₂
    theorem MeasureTheory.levyProkhorovEDist_le_of_forall_add_pos_le {Ω : Type u_2} [MeasurableSpace Ω] [PseudoEMetricSpace Ω] (μ : MeasureTheory.Measure Ω) (ν : MeasureTheory.Measure Ω) (δ : ENNReal) (h : ∀ (ε : ENNReal) (B : Set Ω), 0 < εε < MeasurableSet Bμ B ν (Metric.thickening (δ + ε).toReal B) + δ + ε ν B μ (Metric.thickening (δ + ε).toReal B) + δ + ε) :
    theorem MeasureTheory.levyProkhorovEDist_le_of_forall {Ω : Type u_2} [MeasurableSpace Ω] [PseudoEMetricSpace Ω] (μ : MeasureTheory.Measure Ω) (ν : MeasureTheory.Measure Ω) (δ : ENNReal) (h : ∀ (ε : ENNReal) (B : Set Ω), δ < εε < MeasurableSet Bμ B ν (Metric.thickening ε.toReal B) + ε ν B μ (Metric.thickening ε.toReal B) + ε) :

    The Lévy-Prokhorov distance between finite measures: d(μ,ν) = inf {r ≥ 0 | ∀ B, μ B ≤ ν Bᵣ + r ∧ ν B ≤ μ Bᵣ + r}.

    Equations
    Instances For

      A type synonym, to be used for Measure α, FiniteMeasure α, or ProbabilityMeasure α, when they are to be equipped with the Lévy-Prokhorov distance.

      Equations
      Instances For

        The Lévy-Prokhorov distance levyProkhorovEDist makes Measure Ω a pseudoemetric space. The instance is recorded on the type synonym LevyProkhorov (Measure Ω) := Measure Ω.

        Equations

        The Lévy-Prokhorov distance levyProkhorovDist makes FiniteMeasure Ω a pseudometric space. The instance is recorded on the type synonym LevyProkhorov (FiniteMeasure Ω) := FiniteMeasure Ω.

        Equations
        • One or more equations did not get rendered due to their size.

        The Lévy-Prokhorov distance levyProkhorovDist makes ProbabilityMeasure Ω a pseudoemetric space. The instance is recorded on the type synonym LevyProkhorov (ProbabilityMeasure Ω) := ProbabilityMeasure Ω.

        Equations
        • One or more equations did not get rendered due to their size.

        Coercion from the type synonym LevyProkhorov (ProbabilityMeasure Ω) to ProbabilityMeasure Ω.

        Equations
        Instances For

          Coercion from the type synonym LevyProkhorov (FiniteMeasure Ω) to FiniteMeasure Ω.

          Equations
          Instances For

            A version of the layer cake formula for bounded continuous functions which have finite integral: ∫ f dμ = ∫ t in (0, ‖f‖], μ {x | f(x) ≥ t} dt.

            theorem MeasureTheory.BoundedContinuousFunction.integral_eq_integral_meas_le {α : Type u_3} [MeasurableSpace α] [TopologicalSpace α] [OpensMeasurableSpace α] (f : BoundedContinuousFunction α ) (μ : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] (f_nn : 0 ≤ᶠ[MeasureTheory.Measure.ae μ] f) :
            ∫ (ω : α), f ωμ = ∫ (t : ) in Set.Ioc 0 f, (μ {a : α | t f a}).toReal

            A version of the layer cake formula for bounded continuous functions and finite measures: ∫ f dμ = ∫ t in (0, ‖f‖], μ {x | f(x) ≥ t} dt.

            Assuming levyProkhorovEDist μ ν < ε, we can bound ∫ f ∂μ in terms of ∫ t in (0, ‖f‖], ν (thickening ε {x | f(x) ≥ t}) dt and ‖f‖.

            theorem MeasureTheory.tendsto_integral_meas_thickening_le {Ω : Type u_2} [MeasurableSpace Ω] [PseudoMetricSpace Ω] [OpensMeasurableSpace Ω] (f : BoundedContinuousFunction Ω ) {A : Set } (A_finmeas : MeasureTheory.volume A ) (μ : MeasureTheory.ProbabilityMeasure Ω) :
            Filter.Tendsto (fun (ε : ) => ∫ (t : ) in A, (((fun (s : Set Ω) => (μ s).toNNReal) (Metric.thickening ε {a : Ω | t f a}))).toReal) (nhdsWithin 0 (Set.Ioi 0)) (nhds (∫ (t : ) in A, (((fun (s : Set Ω) => (μ s).toNNReal) {a : Ω | t f a})).toReal))

            A monotone decreasing convergence lemma for integrals of measures of thickenings: ∫ t in (0, ‖f‖], μ (thickening ε {x | f(x) ≥ t}) dt tends to ∫ t in (0, ‖f‖], μ {x | f(x) ≥ t} dt as ε → 0.

            theorem MeasureTheory.continuous_levyProkhorov_to_probabilityMeasure {Ω : Type u_2} [MeasurableSpace Ω] [PseudoMetricSpace Ω] [OpensMeasurableSpace Ω] :
            Continuous MeasureTheory.LevyProkhorov.probabilityMeasure

            The coercion LevyProkhorov (ProbabilityMeasure Ω) → ProbabilityMeasure Ω is continuous.

            theorem MeasureTheory.levyProkhorov_le_convergenceInDistribution {Ω : Type u_2} [MeasurableSpace Ω] [PseudoMetricSpace Ω] [OpensMeasurableSpace Ω] :
            TopologicalSpace.coinduced MeasureTheory.LevyProkhorov.probabilityMeasure inferInstance inferInstance

            The topology of the Lévy-Prokhorov metric is finer than the topology of convergence in distribution.