Scaling Haar measure by a continuous isomorphism #
If G is a locally compact topological group and μ is a regular Haar measure
on G, then an isomorphism φ : G ≃ₜ* G scales this measure by some positive
real constant which we call mulEquivHaarChar φ.
Main definitions #
mulEquivHaarChar φ: the positive real such that(mulEquivHaarChar φ) • map φ μ = μforμa regular Haar measure.addEquivAddHaarChar φ: the additive version.
noncomputable def
MeasureTheory.mulEquivHaarChar
{G : Type u_1}
[Group G]
[TopologicalSpace G]
[MeasurableSpace G]
[BorelSpace G]
[IsTopologicalGroup G]
[LocallyCompactSpace G]
(φ : G ≃ₜ* G)
:
If φ : G ≃ₜ* G then mulEquivHaarChar φ is the positive real factor by which
φ scales Haar measures on G.
Equations
Instances For
noncomputable def
MeasureTheory.addEquivAddHaarChar
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
[MeasurableSpace G]
[BorelSpace G]
[IsTopologicalAddGroup G]
[LocallyCompactSpace G]
(φ : G ≃ₜ+ G)
:
If φ : A ≃ₜ+ A then addEquivAddHaarChar φ is the positive
real factor by which φ scales Haar measures on A.
Equations
Instances For
theorem
MeasureTheory.mulEquivHaarChar_pos
{G : Type u_1}
[Group G]
[TopologicalSpace G]
[MeasurableSpace G]
[BorelSpace G]
[IsTopologicalGroup G]
[LocallyCompactSpace G]
(φ : G ≃ₜ* G)
:
theorem
MeasureTheory.addEquivAddHaarChar_pos
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
[MeasurableSpace G]
[BorelSpace G]
[IsTopologicalAddGroup G]
[LocallyCompactSpace G]
(φ : G ≃ₜ+ G)
:
theorem
MeasureTheory.mulEquivHaarChar_eq
{G : Type u_1}
[Group G]
[TopologicalSpace G]
[MeasurableSpace G]
[BorelSpace G]
[IsTopologicalGroup G]
[LocallyCompactSpace G]
(μ : Measure G)
[μ.IsHaarMeasure]
[μ.Regular]
(φ : G ≃ₜ* G)
:
theorem
MeasureTheory.addEquivAddHaarChar_eq
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
[MeasurableSpace G]
[BorelSpace G]
[IsTopologicalAddGroup G]
[LocallyCompactSpace G]
(μ : Measure G)
[μ.IsAddHaarMeasure]
[μ.Regular]
(φ : G ≃ₜ+ G)
:
theorem
MeasureTheory.mulEquivHaarChar_smul_map
{G : Type u_1}
[Group G]
[TopologicalSpace G]
[MeasurableSpace G]
[BorelSpace G]
[IsTopologicalGroup G]
[LocallyCompactSpace G]
(μ : Measure G)
[μ.IsHaarMeasure]
[μ.Regular]
(φ : G ≃ₜ* G)
:
theorem
MeasureTheory.addEquivAddHaarChar_smul_map
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
[MeasurableSpace G]
[BorelSpace G]
[IsTopologicalAddGroup G]
[LocallyCompactSpace G]
(μ : Measure G)
[μ.IsAddHaarMeasure]
[μ.Regular]
(φ : G ≃ₜ+ G)
:
theorem
MeasureTheory.mulEquivHaarChar_smul_eq_comap
{G : Type u_1}
[Group G]
[TopologicalSpace G]
[MeasurableSpace G]
[BorelSpace G]
[IsTopologicalGroup G]
[LocallyCompactSpace G]
(μ : Measure G)
[μ.IsHaarMeasure]
[μ.Regular]
(φ : G ≃ₜ* G)
:
theorem
MeasureTheory.addEquivAddHaarChar_smul_eq_comap
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
[MeasurableSpace G]
[BorelSpace G]
[IsTopologicalAddGroup G]
[LocallyCompactSpace G]
(μ : Measure G)
[μ.IsAddHaarMeasure]
[μ.Regular]
(φ : G ≃ₜ+ G)
:
theorem
MeasureTheory.mulEquivHaarChar_smul_integral_map
{G : Type u_1}
[Group G]
[TopologicalSpace G]
[MeasurableSpace G]
[BorelSpace G]
[IsTopologicalGroup G]
[LocallyCompactSpace G]
(μ : Measure G)
[μ.IsHaarMeasure]
[μ.Regular]
{f : G → ℝ}
(φ : G ≃ₜ* G)
:
theorem
MeasureTheory.addEquivAddHaarChar_smul_integral_map
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
[MeasurableSpace G]
[BorelSpace G]
[IsTopologicalAddGroup G]
[LocallyCompactSpace G]
(μ : Measure G)
[μ.IsAddHaarMeasure]
[μ.Regular]
{f : G → ℝ}
(φ : G ≃ₜ+ G)
:
theorem
MeasureTheory.integral_comap_eq_mulEquivHaarChar_smul
{G : Type u_1}
[Group G]
[TopologicalSpace G]
[MeasurableSpace G]
[BorelSpace G]
[IsTopologicalGroup G]
[LocallyCompactSpace G]
(μ : Measure G)
[μ.IsHaarMeasure]
[μ.Regular]
{f : G → ℝ}
(φ : G ≃ₜ* G)
:
theorem
MeasureTheory.integral_comap_eq_addEquivAddHaarChar_smul
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
[MeasurableSpace G]
[BorelSpace G]
[IsTopologicalAddGroup G]
[LocallyCompactSpace G]
(μ : Measure G)
[μ.IsAddHaarMeasure]
[μ.Regular]
{f : G → ℝ}
(φ : G ≃ₜ+ G)
:
theorem
MeasureTheory.mulEquivHaarChar_smul_preimage
{G : Type u_1}
[Group G]
[TopologicalSpace G]
[MeasurableSpace G]
[BorelSpace G]
[IsTopologicalGroup G]
[LocallyCompactSpace G]
(μ : Measure G)
[μ.IsHaarMeasure]
[μ.Regular]
{X : Set G}
(φ : G ≃ₜ* G)
:
theorem
MeasureTheory.addEquivAddHaarChar_smul_preimage
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
[MeasurableSpace G]
[BorelSpace G]
[IsTopologicalAddGroup G]
[LocallyCompactSpace G]
(μ : Measure G)
[μ.IsAddHaarMeasure]
[μ.Regular]
{X : Set G}
(φ : G ≃ₜ+ G)
:
@[simp]
theorem
MeasureTheory.mulEquivHaarChar_refl
{G : Type u_1}
[Group G]
[TopologicalSpace G]
[MeasurableSpace G]
[BorelSpace G]
[IsTopologicalGroup G]
[LocallyCompactSpace G]
:
@[simp]
theorem
MeasureTheory.addEquivAddHaarChar_refl
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
[MeasurableSpace G]
[BorelSpace G]
[IsTopologicalAddGroup G]
[LocallyCompactSpace G]
:
theorem
MeasureTheory.mulEquivHaarChar_trans
{G : Type u_1}
[Group G]
[TopologicalSpace G]
[MeasurableSpace G]
[BorelSpace G]
[IsTopologicalGroup G]
[LocallyCompactSpace G]
{φ ψ : G ≃ₜ* G}
:
theorem
MeasureTheory.addEquivAddHaarChar_trans
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
[MeasurableSpace G]
[BorelSpace G]
[IsTopologicalAddGroup G]
[LocallyCompactSpace G]
{φ ψ : G ≃ₜ+ G}
: