Documentation

Mathlib.MeasureTheory.Measure.Haar.NormedSpace

Basic properties of Haar measures on real vector spaces #

instance MeasureTheory.Measure.MapLinearEquiv.isAddHaarMeasure {๐•œ : Type u_1} {G : Type u_2} {H : Type u_3} [MeasurableSpace G] [MeasurableSpace H] [NontriviallyNormedField ๐•œ] [TopologicalSpace G] [TopologicalSpace H] [AddCommGroup G] [AddCommGroup H] [IsTopologicalAddGroup G] [IsTopologicalAddGroup H] [Module ๐•œ G] [Module ๐•œ H] (ฮผ : Measure G) [ฮผ.IsAddHaarMeasure] [BorelSpace G] [BorelSpace H] [CompleteSpace ๐•œ] [T2Space G] [FiniteDimensional ๐•œ G] [ContinuousSMul ๐•œ G] [ContinuousSMul ๐•œ H] [T2Space H] (e : G โ‰ƒโ‚—[๐•œ] H) :
(map (โ‡‘e) ฮผ).IsAddHaarMeasure
theorem MonoidHom.exists_nhds_isBounded {G : Type u_1} {H : Type u_2} [MeasurableSpace G] [Group G] [TopologicalSpace G] [IsTopologicalGroup G] [BorelSpace G] [LocallyCompactSpace G] [MeasurableSpace H] [SeminormedGroup H] [OpensMeasurableSpace H] (f : G โ†’* H) (hf : Measurable โ‡‘f) (x : G) :
โˆƒ s โˆˆ nhds x, Bornology.IsBounded (โ‡‘f '' s)

A Borel-measurable group hom from a locally compact normed group to a real normed space is continuous.

The integral of f (R โ€ข x) with respect to an additive Haar measure is a multiple of the integral of f. The formula we give works even when f is not integrable or R = 0 thanks to the convention that a non-integrable function has integral zero.

The integral of f (R โ€ข x) with respect to an additive Haar measure is a multiple of the integral of f. The formula we give works even when f is not integrable or R = 0 thanks to the convention that a non-integrable function has integral zero.

The integral of f (Rโปยน โ€ข x) with respect to an additive Haar measure is a multiple of the integral of f. The formula we give works even when f is not integrable or R = 0 thanks to the convention that a non-integrable function has integral zero.

The integral of f (Rโปยน โ€ข x) with respect to an additive Haar measure is a multiple of the integral of f. The formula we give works even when f is not integrable or R = 0 thanks to the convention that a non-integrable function has integral zero.

theorem MeasureTheory.integrable_comp_smul_iff {F : Type u_1} [NormedAddCommGroup F] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace โ„ E] [MeasurableSpace E] [BorelSpace E] [FiniteDimensional โ„ E] (ฮผ : Measure E) [ฮผ.IsAddHaarMeasure] (f : E โ†’ F) {R : โ„} (hR : R โ‰  0) :
Integrable (fun (x : E) => f (R โ€ข x)) ฮผ โ†” Integrable f ฮผ
theorem MeasureTheory.Integrable.comp_smul {F : Type u_1} [NormedAddCommGroup F] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace โ„ E] [MeasurableSpace E] [BorelSpace E] [FiniteDimensional โ„ E] {ฮผ : Measure E} [ฮผ.IsAddHaarMeasure] {f : E โ†’ F} (hf : Integrable f ฮผ) {R : โ„} (hR : R โ‰  0) :
Integrable (fun (x : E) => f (R โ€ข x)) ฮผ
theorem MeasureTheory.integrable_comp_mul_left_iff {F : Type u_1} [NormedAddCommGroup F] (g : โ„ โ†’ F) {R : โ„} (hR : R โ‰  0) :
theorem MeasureTheory.Integrable.comp_mul_left' {F : Type u_1} [NormedAddCommGroup F] {g : โ„ โ†’ F} (hg : Integrable g volume) {R : โ„} (hR : R โ‰  0) :
Integrable (fun (x : โ„) => g (R * x)) volume
theorem MeasureTheory.integrable_comp_mul_right_iff {F : Type u_1} [NormedAddCommGroup F] (g : โ„ โ†’ F) {R : โ„} (hR : R โ‰  0) :
theorem MeasureTheory.Integrable.comp_mul_right' {F : Type u_1} [NormedAddCommGroup F] {g : โ„ โ†’ F} (hg : Integrable g volume) {R : โ„} (hR : R โ‰  0) :
Integrable (fun (x : โ„) => g (x * R)) volume
theorem MeasureTheory.integrable_comp_div_iff {F : Type u_1} [NormedAddCommGroup F] (g : โ„ โ†’ F) {R : โ„} (hR : R โ‰  0) :
theorem MeasureTheory.Integrable.comp_div {F : Type u_1} [NormedAddCommGroup F] {g : โ„ โ†’ F} (hg : Integrable g volume) {R : โ„} (hR : R โ‰  0) :
Integrable (fun (x : โ„) => g (x / R)) volume