Log-likelihood Ratio #
The likelihood ratio between two measures μ
and ν
is their Radon-Nikodym derivative
μ.rnDeriv ν
. The logarithm of that function is often used instead: this is the log-likelihood
ratio.
This file contains a definition of the log-likelihood ratio (llr) and its properties.
Main definitions #
llr μ ν
: Log-Likelihood Ratio betweenμ
andν
, defined as the functionx ↦ log (μ.rnDeriv ν x).toReal
.
noncomputable def
MeasureTheory.llr
{α : Type u_1}
{mα : MeasurableSpace α}
(μ ν : Measure α)
(x : α)
:
Log-Likelihood Ratio between two measures.
Equations
- MeasureTheory.llr μ ν x = Real.log (μ.rnDeriv ν x).toReal
Instances For
theorem
MeasureTheory.exp_llr
{α : Type u_1}
{mα : MeasurableSpace α}
(μ ν : Measure α)
[SigmaFinite μ]
:
theorem
MeasureTheory.exp_llr_of_ac
{α : Type u_1}
{mα : MeasurableSpace α}
(μ ν : Measure α)
[SigmaFinite μ]
[μ.HaveLebesgueDecomposition ν]
(hμν : μ.AbsolutelyContinuous ν)
:
theorem
MeasureTheory.exp_llr_of_ac'
{α : Type u_1}
{mα : MeasurableSpace α}
(μ ν : Measure α)
[SigmaFinite μ]
[SigmaFinite ν]
(hμν : ν.AbsolutelyContinuous μ)
:
theorem
MeasureTheory.neg_llr
{α : Type u_1}
{mα : MeasurableSpace α}
{μ ν : Measure α}
[SigmaFinite μ]
[SigmaFinite ν]
(hμν : μ.AbsolutelyContinuous ν)
:
theorem
MeasureTheory.exp_neg_llr
{α : Type u_1}
{mα : MeasurableSpace α}
{μ ν : Measure α}
[SigmaFinite μ]
[SigmaFinite ν]
(hμν : μ.AbsolutelyContinuous ν)
:
theorem
MeasureTheory.exp_neg_llr'
{α : Type u_1}
{mα : MeasurableSpace α}
{μ ν : Measure α}
[SigmaFinite μ]
[SigmaFinite ν]
(hμν : ν.AbsolutelyContinuous μ)
:
theorem
MeasureTheory.measurable_llr
{α : Type u_1}
{mα : MeasurableSpace α}
(μ ν : Measure α)
:
Measurable (llr μ ν)
theorem
MeasureTheory.stronglyMeasurable_llr
{α : Type u_1}
{mα : MeasurableSpace α}
(μ ν : Measure α)
:
StronglyMeasurable (llr μ ν)
theorem
MeasureTheory.llr_tilted_left
{α : Type u_1}
{mα : MeasurableSpace α}
{μ ν : Measure α}
{f : α → ℝ}
[SigmaFinite μ]
[SigmaFinite ν]
(hμν : μ.AbsolutelyContinuous ν)
(hf : Integrable (fun (x : α) => Real.exp (f x)) μ)
(hfν : AEMeasurable f ν)
:
theorem
MeasureTheory.integrable_llr_tilted_left
{α : Type u_1}
{mα : MeasurableSpace α}
{μ ν : Measure α}
{f : α → ℝ}
[IsFiniteMeasure μ]
[SigmaFinite ν]
(hμν : μ.AbsolutelyContinuous ν)
(hf : Integrable f μ)
(h_int : Integrable (llr μ ν) μ)
(hfμ : Integrable (fun (x : α) => Real.exp (f x)) μ)
(hfν : AEMeasurable f ν)
:
Integrable (llr (μ.tilted f) ν) μ
theorem
MeasureTheory.integral_llr_tilted_left
{α : Type u_1}
{mα : MeasurableSpace α}
{μ ν : Measure α}
{f : α → ℝ}
[IsProbabilityMeasure μ]
[SigmaFinite ν]
(hμν : μ.AbsolutelyContinuous ν)
(hf : Integrable f μ)
(h_int : Integrable (llr μ ν) μ)
(hfμ : Integrable (fun (x : α) => Real.exp (f x)) μ)
(hfν : AEMeasurable f ν)
:
theorem
MeasureTheory.llr_tilted_right
{α : Type u_1}
{mα : MeasurableSpace α}
{μ ν : Measure α}
{f : α → ℝ}
[SigmaFinite μ]
[SigmaFinite ν]
(hμν : μ.AbsolutelyContinuous ν)
(hf : Integrable (fun (x : α) => Real.exp (f x)) ν)
:
theorem
MeasureTheory.integrable_llr_tilted_right
{α : Type u_1}
{mα : MeasurableSpace α}
{μ ν : Measure α}
{f : α → ℝ}
[IsFiniteMeasure μ]
[SigmaFinite ν]
(hμν : μ.AbsolutelyContinuous ν)
(hfμ : Integrable f μ)
(h_int : Integrable (llr μ ν) μ)
(hfν : Integrable (fun (x : α) => Real.exp (f x)) ν)
:
Integrable (llr μ (ν.tilted f)) μ
theorem
MeasureTheory.integral_llr_tilted_right
{α : Type u_1}
{mα : MeasurableSpace α}
{μ ν : Measure α}
{f : α → ℝ}
[IsProbabilityMeasure μ]
[SigmaFinite ν]
(hμν : μ.AbsolutelyContinuous ν)
(hfμ : Integrable f μ)
(hfν : Integrable (fun (x : α) => Real.exp (f x)) ν)
(h_int : Integrable (llr μ ν) μ)
: