Documentation

Mathlib.ModelTheory.Equivalence

Equivalence of Formulas #

Main Definitions #

TODO #

def FirstOrder.Language.Theory.Imp {L : FirstOrder.Language} {α : Type w} {n : } (T : L.Theory) (φ ψ : L.BoundedFormula α n) :

φ ⟹[T] ψ indicates that φ implies ψ in models of T.

Equations
Instances For

    φ ⟹[T] ψ indicates that φ implies ψ in models of T.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem FirstOrder.Language.Theory.Imp.refl {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } (φ : L.BoundedFormula α n) :
      T.Imp φ φ
      instance FirstOrder.Language.Theory.Imp.instIsReflBoundedFormula {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } :
      IsRefl (L.BoundedFormula α n) T.Imp
      Equations
      • =
      theorem FirstOrder.Language.Theory.Imp.trans {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } {φ ψ θ : L.BoundedFormula α n} (h1 : T.Imp φ ψ) (h2 : T.Imp ψ θ) :
      T.Imp φ θ
      instance FirstOrder.Language.Theory.Imp.instIsTransBoundedFormula {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } :
      IsTrans (L.BoundedFormula α n) T.Imp
      Equations
      • =
      theorem FirstOrder.Language.Theory.bot_imp {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } (φ : L.BoundedFormula α n) :
      T.Imp φ
      theorem FirstOrder.Language.Theory.imp_top {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } (φ : L.BoundedFormula α n) :
      T.Imp φ
      theorem FirstOrder.Language.Theory.imp_sup_left {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } (φ ψ : L.BoundedFormula α n) :
      T.Imp φ (φ ψ)
      theorem FirstOrder.Language.Theory.imp_sup_right {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } (φ ψ : L.BoundedFormula α n) :
      T.Imp ψ (φ ψ)
      theorem FirstOrder.Language.Theory.sup_imp {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } {φ ψ θ : L.BoundedFormula α n} (h₁ : T.Imp φ θ) (h₂ : T.Imp ψ θ) :
      T.Imp (φ ψ) θ
      theorem FirstOrder.Language.Theory.sup_imp_iff {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } {φ ψ θ : L.BoundedFormula α n} :
      T.Imp (φ ψ) θ T.Imp φ θ T.Imp ψ θ
      theorem FirstOrder.Language.Theory.inf_imp_left {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } (φ ψ : L.BoundedFormula α n) :
      T.Imp (φ ψ) φ
      theorem FirstOrder.Language.Theory.inf_imp_right {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } (φ ψ : L.BoundedFormula α n) :
      T.Imp (φ ψ) ψ
      theorem FirstOrder.Language.Theory.imp_inf {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } {φ ψ θ : L.BoundedFormula α n} (h₁ : T.Imp φ ψ) (h₂ : T.Imp φ θ) :
      T.Imp φ (ψ θ)
      theorem FirstOrder.Language.Theory.imp_inf_iff {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } {φ ψ θ : L.BoundedFormula α n} :
      T.Imp φ (ψ θ) T.Imp φ ψ T.Imp φ θ
      def FirstOrder.Language.Theory.Iff {L : FirstOrder.Language} {α : Type w} {n : } (T : L.Theory) (φ ψ : L.BoundedFormula α n) :

      Two (bounded) formulas are semantically equivalent over a theory T when they have the same interpretation in every model of T. (This is also known as logical equivalence, which also has a proof-theoretic definition.)

      Equations
      Instances For

        Two (bounded) formulas are semantically equivalent over a theory T when they have the same interpretation in every model of T. (This is also known as logical equivalence, which also has a proof-theoretic definition.)

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem FirstOrder.Language.Theory.iff_iff_imp_and_imp {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } {φ ψ : L.BoundedFormula α n} :
          T.Iff φ ψ T.Imp φ ψ T.Imp ψ φ
          theorem FirstOrder.Language.Theory.imp_antisymm {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } {φ ψ : L.BoundedFormula α n} (h₁ : T.Imp φ ψ) (h₂ : T.Imp ψ φ) :
          T.Iff φ ψ
          theorem FirstOrder.Language.Theory.Iff.mp {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } {φ ψ : L.BoundedFormula α n} (h : T.Iff φ ψ) :
          T.Imp φ ψ
          theorem FirstOrder.Language.Theory.Iff.mpr {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } {φ ψ : L.BoundedFormula α n} (h : T.Iff φ ψ) :
          T.Imp ψ φ
          theorem FirstOrder.Language.Theory.Iff.refl {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } (φ : L.BoundedFormula α n) :
          T.Iff φ φ
          instance FirstOrder.Language.Theory.Iff.instIsReflBoundedFormula {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } :
          IsRefl (L.BoundedFormula α n) T.Iff
          Equations
          • =
          theorem FirstOrder.Language.Theory.Iff.symm {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } {φ ψ : L.BoundedFormula α n} (h : T.Iff φ ψ) :
          T.Iff ψ φ
          instance FirstOrder.Language.Theory.Iff.instIsSymmBoundedFormula {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } :
          IsSymm (L.BoundedFormula α n) T.Iff
          Equations
          • =
          theorem FirstOrder.Language.Theory.Iff.trans {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } {φ ψ θ : L.BoundedFormula α n} (h1 : T.Iff φ ψ) (h2 : T.Iff ψ θ) :
          T.Iff φ θ
          instance FirstOrder.Language.Theory.Iff.instIsTransBoundedFormula {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } :
          IsTrans (L.BoundedFormula α n) T.Iff
          Equations
          • =
          theorem FirstOrder.Language.Theory.Iff.realize_bd_iff {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } {M : Type u_1} [Nonempty M] [L.Structure M] [M T] {φ ψ : L.BoundedFormula α n} (h : T.Iff φ ψ) {v : αM} {xs : Fin nM} :
          φ.Realize v xs ψ.Realize v xs
          theorem FirstOrder.Language.Theory.Iff.realize_iff {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {φ ψ : L.Formula α} {M : Type u_2} [Nonempty M] [L.Structure M] [M T] (h : T.Iff φ ψ) {v : αM} :
          φ.Realize v ψ.Realize v
          theorem FirstOrder.Language.Theory.Iff.models_sentence_iff {L : FirstOrder.Language} {T : L.Theory} {φ ψ : L.Sentence} {M : Type u_2} [Nonempty M] [L.Structure M] [M T] (h : T.Iff φ ψ) :
          M φ M ψ
          theorem FirstOrder.Language.Theory.Iff.all {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } {φ ψ : L.BoundedFormula α (n + 1)} (h : T.Iff φ ψ) :
          T.Iff φ.all ψ.all
          theorem FirstOrder.Language.Theory.Iff.ex {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } {φ ψ : L.BoundedFormula α (n + 1)} (h : T.Iff φ ψ) :
          T.Iff φ.ex ψ.ex
          theorem FirstOrder.Language.Theory.Iff.not {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } {φ ψ : L.BoundedFormula α n} (h : T.Iff φ ψ) :
          T.Iff φ.not ψ.not
          theorem FirstOrder.Language.Theory.Iff.imp {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } {φ ψ φ' ψ' : L.BoundedFormula α n} (h : T.Iff φ ψ) (h' : T.Iff φ' ψ') :
          T.Iff (φ.imp φ') (ψ.imp ψ')
          def FirstOrder.Language.Theory.iffSetoid {L : FirstOrder.Language} {α : Type w} {n : } (T : L.Theory) :
          Setoid (L.BoundedFormula α n)

          Semantic equivalence forms an equivalence relation on formulas.

          Equations
          • T.iffSetoid = { r := T.Iff, iseqv := }
          Instances For
            theorem FirstOrder.Language.BoundedFormula.iff_not_not {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } (φ : L.BoundedFormula α n) :
            T.Iff φ φ.not.not
            theorem FirstOrder.Language.BoundedFormula.imp_iff_not_sup {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } (φ ψ : L.BoundedFormula α n) :
            T.Iff (φ.imp ψ) (φ.not ψ)
            theorem FirstOrder.Language.BoundedFormula.sup_iff_not_inf_not {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } (φ ψ : L.BoundedFormula α n) :
            T.Iff (φ ψ) (φ.not ψ.not).not
            theorem FirstOrder.Language.BoundedFormula.inf_iff_not_sup_not {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } (φ ψ : L.BoundedFormula α n) :
            T.Iff (φ ψ) (φ.not ψ.not).not
            theorem FirstOrder.Language.BoundedFormula.all_iff_not_ex_not {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } (φ : L.BoundedFormula α (n + 1)) :
            T.Iff φ.all φ.not.ex.not
            theorem FirstOrder.Language.BoundedFormula.ex_iff_not_all_not {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } (φ : L.BoundedFormula α (n + 1)) :
            T.Iff φ.ex φ.not.all.not
            theorem FirstOrder.Language.BoundedFormula.iff_all_liftAt {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } (φ : L.BoundedFormula α n) :
            theorem FirstOrder.Language.BoundedFormula.inf_not_iff_bot {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } (φ : L.BoundedFormula α n) :
            T.Iff (φ φ.not)
            theorem FirstOrder.Language.BoundedFormula.sup_not_iff_top {L : FirstOrder.Language} {T : L.Theory} {α : Type w} {n : } (φ : L.BoundedFormula α n) :
            T.Iff (φ φ.not)
            theorem FirstOrder.Language.Formula.iff_not_not {L : FirstOrder.Language} {T : L.Theory} {α : Type w} (φ : L.Formula α) :
            T.Iff φ φ.not.not
            theorem FirstOrder.Language.Formula.imp_iff_not_sup {L : FirstOrder.Language} {T : L.Theory} {α : Type w} (φ ψ : L.Formula α) :
            T.Iff (φ.imp ψ) (φ.not ψ)
            theorem FirstOrder.Language.Formula.sup_iff_not_inf_not {L : FirstOrder.Language} {T : L.Theory} {α : Type w} (φ ψ : L.Formula α) :
            T.Iff (φ ψ) (φ.not ψ.not).not
            theorem FirstOrder.Language.Formula.inf_iff_not_sup_not {L : FirstOrder.Language} {T : L.Theory} {α : Type w} (φ ψ : L.Formula α) :
            T.Iff (φ ψ) (φ.not ψ.not).not