Equivalence of Formulas #
Main Definitions #
FirstOrder.Language.Theory.Imp
:φ ⟹[T] ψ
indicates thatφ
impliesψ
in models ofT
.FirstOrder.Language.Theory.Iff
:φ ⇔[T] ψ
indicates thatφ
andψ
are equivalent formulas or sentences in models ofT
.
TODO #
- Define the quotient of
L.Formula α
modulo⇔[T]
and its Boolean Algebra structure.
def
FirstOrder.Language.Theory.Imp
{L : FirstOrder.Language}
{α : Type w}
{n : ℕ}
(T : L.Theory)
(φ ψ : L.BoundedFormula α n)
:
φ ⟹[T] ψ
indicates that φ
implies ψ
in models of T
.
Instances For
φ ⟹[T] ψ
indicates that φ
implies ψ
in models of T
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
FirstOrder.Language.Theory.Imp.refl
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
(φ : L.BoundedFormula α n)
:
T.Imp φ φ
instance
FirstOrder.Language.Theory.Imp.instIsReflBoundedFormula
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
:
IsRefl (L.BoundedFormula α n) T.Imp
theorem
FirstOrder.Language.Theory.Imp.trans
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
{φ ψ θ : L.BoundedFormula α n}
(h1 : T.Imp φ ψ)
(h2 : T.Imp ψ θ)
:
T.Imp φ θ
instance
FirstOrder.Language.Theory.Imp.instIsTransBoundedFormula
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
:
IsTrans (L.BoundedFormula α n) T.Imp
theorem
FirstOrder.Language.Theory.bot_imp
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
(φ : L.BoundedFormula α n)
:
T.Imp ⊥ φ
theorem
FirstOrder.Language.Theory.imp_top
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
(φ : L.BoundedFormula α n)
:
T.Imp φ ⊤
theorem
FirstOrder.Language.Theory.imp_sup_left
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
(φ ψ : L.BoundedFormula α n)
:
T.Imp φ (φ ⊔ ψ)
theorem
FirstOrder.Language.Theory.imp_sup_right
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
(φ ψ : L.BoundedFormula α n)
:
T.Imp ψ (φ ⊔ ψ)
theorem
FirstOrder.Language.Theory.sup_imp
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
{φ ψ θ : L.BoundedFormula α n}
(h₁ : T.Imp φ θ)
(h₂ : T.Imp ψ θ)
:
T.Imp (φ ⊔ ψ) θ
theorem
FirstOrder.Language.Theory.sup_imp_iff
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
{φ ψ θ : L.BoundedFormula α n}
:
theorem
FirstOrder.Language.Theory.inf_imp_left
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
(φ ψ : L.BoundedFormula α n)
:
T.Imp (φ ⊓ ψ) φ
theorem
FirstOrder.Language.Theory.inf_imp_right
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
(φ ψ : L.BoundedFormula α n)
:
T.Imp (φ ⊓ ψ) ψ
theorem
FirstOrder.Language.Theory.imp_inf
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
{φ ψ θ : L.BoundedFormula α n}
(h₁ : T.Imp φ ψ)
(h₂ : T.Imp φ θ)
:
T.Imp φ (ψ ⊓ θ)
theorem
FirstOrder.Language.Theory.imp_inf_iff
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
{φ ψ θ : L.BoundedFormula α n}
:
def
FirstOrder.Language.Theory.Iff
{L : FirstOrder.Language}
{α : Type w}
{n : ℕ}
(T : L.Theory)
(φ ψ : L.BoundedFormula α n)
:
Two (bounded) formulas are semantically equivalent over a theory T
when they have the same
interpretation in every model of T
. (This is also known as logical equivalence, which also has a
proof-theoretic definition.)
Instances For
Two (bounded) formulas are semantically equivalent over a theory T
when they have the same
interpretation in every model of T
. (This is also known as logical equivalence, which also has a
proof-theoretic definition.)
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
FirstOrder.Language.Theory.iff_iff_imp_and_imp
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
{φ ψ : L.BoundedFormula α n}
:
theorem
FirstOrder.Language.Theory.imp_antisymm
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
{φ ψ : L.BoundedFormula α n}
(h₁ : T.Imp φ ψ)
(h₂ : T.Imp ψ φ)
:
T.Iff φ ψ
theorem
FirstOrder.Language.Theory.Iff.mp
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
{φ ψ : L.BoundedFormula α n}
(h : T.Iff φ ψ)
:
T.Imp φ ψ
theorem
FirstOrder.Language.Theory.Iff.mpr
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
{φ ψ : L.BoundedFormula α n}
(h : T.Iff φ ψ)
:
T.Imp ψ φ
theorem
FirstOrder.Language.Theory.Iff.refl
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
(φ : L.BoundedFormula α n)
:
T.Iff φ φ
instance
FirstOrder.Language.Theory.Iff.instIsReflBoundedFormula
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
:
IsRefl (L.BoundedFormula α n) T.Iff
theorem
FirstOrder.Language.Theory.Iff.symm
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
{φ ψ : L.BoundedFormula α n}
(h : T.Iff φ ψ)
:
T.Iff ψ φ
instance
FirstOrder.Language.Theory.Iff.instIsSymmBoundedFormula
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
:
IsSymm (L.BoundedFormula α n) T.Iff
theorem
FirstOrder.Language.Theory.Iff.trans
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
{φ ψ θ : L.BoundedFormula α n}
(h1 : T.Iff φ ψ)
(h2 : T.Iff ψ θ)
:
T.Iff φ θ
instance
FirstOrder.Language.Theory.Iff.instIsTransBoundedFormula
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
:
IsTrans (L.BoundedFormula α n) T.Iff
theorem
FirstOrder.Language.Theory.Iff.realize_bd_iff
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
{M : Type u_1}
[Nonempty M]
[L.Structure M]
[M ⊨ T]
{φ ψ : L.BoundedFormula α n}
(h : T.Iff φ ψ)
{v : α → M}
{xs : Fin n → M}
:
φ.Realize v xs ↔ ψ.Realize v xs
theorem
FirstOrder.Language.Theory.Iff.realize_iff
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{φ ψ : L.Formula α}
{M : Type u_2}
[Nonempty M]
[L.Structure M]
[M ⊨ T]
(h : T.Iff φ ψ)
{v : α → M}
:
φ.Realize v ↔ ψ.Realize v
theorem
FirstOrder.Language.Theory.Iff.models_sentence_iff
{L : FirstOrder.Language}
{T : L.Theory}
{φ ψ : L.Sentence}
{M : Type u_2}
[Nonempty M]
[L.Structure M]
[M ⊨ T]
(h : T.Iff φ ψ)
:
theorem
FirstOrder.Language.Theory.Iff.all
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
{φ ψ : L.BoundedFormula α (n + 1)}
(h : T.Iff φ ψ)
:
T.Iff φ.all ψ.all
theorem
FirstOrder.Language.Theory.Iff.ex
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
{φ ψ : L.BoundedFormula α (n + 1)}
(h : T.Iff φ ψ)
:
T.Iff φ.ex ψ.ex
theorem
FirstOrder.Language.Theory.Iff.not
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
{φ ψ : L.BoundedFormula α n}
(h : T.Iff φ ψ)
:
T.Iff φ.not ψ.not
theorem
FirstOrder.Language.Theory.Iff.imp
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
{φ ψ φ' ψ' : L.BoundedFormula α n}
(h : T.Iff φ ψ)
(h' : T.Iff φ' ψ')
:
T.Iff (φ.imp φ') (ψ.imp ψ')
def
FirstOrder.Language.Theory.iffSetoid
{L : FirstOrder.Language}
{α : Type w}
{n : ℕ}
(T : L.Theory)
:
Setoid (L.BoundedFormula α n)
Semantic equivalence forms an equivalence relation on formulas.
Equations
- T.iffSetoid = { r := T.Iff, iseqv := ⋯ }
Instances For
theorem
FirstOrder.Language.BoundedFormula.iff_not_not
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
(φ : L.BoundedFormula α n)
:
T.Iff φ φ.not.not
theorem
FirstOrder.Language.BoundedFormula.imp_iff_not_sup
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
(φ ψ : L.BoundedFormula α n)
:
T.Iff (φ.imp ψ) (φ.not ⊔ ψ)
theorem
FirstOrder.Language.BoundedFormula.sup_iff_not_inf_not
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
(φ ψ : L.BoundedFormula α n)
:
theorem
FirstOrder.Language.BoundedFormula.inf_iff_not_sup_not
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
(φ ψ : L.BoundedFormula α n)
:
theorem
FirstOrder.Language.BoundedFormula.all_iff_not_ex_not
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
(φ : L.BoundedFormula α (n + 1))
:
T.Iff φ.all φ.not.ex.not
theorem
FirstOrder.Language.BoundedFormula.ex_iff_not_all_not
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
(φ : L.BoundedFormula α (n + 1))
:
T.Iff φ.ex φ.not.all.not
theorem
FirstOrder.Language.BoundedFormula.iff_all_liftAt
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
(φ : L.BoundedFormula α n)
:
T.Iff φ (FirstOrder.Language.BoundedFormula.liftAt 1 n φ).all
theorem
FirstOrder.Language.BoundedFormula.inf_not_iff_bot
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
(φ : L.BoundedFormula α n)
:
theorem
FirstOrder.Language.BoundedFormula.sup_not_iff_top
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{n : ℕ}
(φ : L.BoundedFormula α n)
:
theorem
FirstOrder.Language.Formula.iff_not_not
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
(φ : L.Formula α)
:
T.Iff φ φ.not.not
theorem
FirstOrder.Language.Formula.imp_iff_not_sup
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
(φ ψ : L.Formula α)
:
T.Iff (φ.imp ψ) (φ.not ⊔ ψ)
theorem
FirstOrder.Language.Formula.sup_iff_not_inf_not
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
(φ ψ : L.Formula α)
:
theorem
FirstOrder.Language.Formula.inf_iff_not_sup_not
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
(φ ψ : L.Formula α)
: