Skolem Functions and Downward Löwenheim–Skolem #
Main Definitions #
FirstOrder.Language.skolem₁
is a language consisting of Skolem functions for another language.
Main Results #
FirstOrder.Language.exists_elementarySubstructure_card_eq
is the Downward Löwenheim–Skolem theorem: Ifs
is a set in anL
-structureM
andκ
an infinite cardinal such thatmax (#s, L.card) ≤ κ
andκ ≤ # M
, thenM
has an elementary substructure containings
of cardinalityκ
.
TODO #
- Use
skolem₁
recursively to construct an actual Skolemization of a language.
A language consisting of Skolem functions for another language.
Called skolem₁
because it is the first step in building a Skolemization of a language.
Equations
Instances For
@[simp]
@[simp]
theorem
FirstOrder.Language.card_functions_sum_skolem₁
{L : FirstOrder.Language}
:
Cardinal.mk ((n : ℕ) × (L.sum L.skolem₁).Functions n) = Cardinal.mk ((n : ℕ) × L.BoundedFormula Empty (n + 1))
theorem
FirstOrder.Language.card_functions_sum_skolem₁_le
{L : FirstOrder.Language}
:
Cardinal.mk ((n : ℕ) × (L.sum L.skolem₁).Functions n) ≤ Cardinal.aleph0 ⊔ L.card
noncomputable instance
FirstOrder.Language.skolem₁Structure
{L : FirstOrder.Language}
{M : Type w}
[Nonempty M]
[L.Structure M]
:
L.skolem₁.Structure M
The structure assigning each function symbol of L.skolem₁
to a skolem function generated with
choice.
Equations
- One or more equations did not get rendered due to their size.
theorem
FirstOrder.Language.Substructure.skolem₁_reduct_isElementary
{L : FirstOrder.Language}
{M : Type w}
[Nonempty M]
[L.Structure M]
(S : (L.sum L.skolem₁).Substructure M)
:
(FirstOrder.Language.LHom.sumInl.substructureReduct S).IsElementary
noncomputable def
FirstOrder.Language.Substructure.elementarySkolem₁Reduct
{L : FirstOrder.Language}
{M : Type w}
[Nonempty M]
[L.Structure M]
(S : (L.sum L.skolem₁).Substructure M)
:
L.ElementarySubstructure M
Any L.sum L.skolem₁
-substructure is an elementary L
-substructure.
Equations
- S.elementarySkolem₁Reduct = { toSubstructure := FirstOrder.Language.LHom.sumInl.substructureReduct S, isElementary' := ⋯ }
Instances For
theorem
FirstOrder.Language.Substructure.coeSort_elementarySkolem₁Reduct
{L : FirstOrder.Language}
{M : Type w}
[Nonempty M]
[L.Structure M]
(S : (L.sum L.skolem₁).Substructure M)
:
↥S.elementarySkolem₁Reduct = ↥S
instance
FirstOrder.Language.Substructure.elementarySkolem₁Reduct.instSmall
(L : FirstOrder.Language)
(M : Type w)
[Nonempty M]
[L.Structure M]
:
Small.{max u v, w} ↥⊥.elementarySkolem₁Reduct
theorem
FirstOrder.Language.exists_small_elementarySubstructure
(L : FirstOrder.Language)
(M : Type w)
[Nonempty M]
[L.Structure M]
:
∃ (S : L.ElementarySubstructure M), Small.{max u v, w} ↥S
theorem
FirstOrder.Language.exists_elementarySubstructure_card_eq
(L : FirstOrder.Language)
{M : Type w}
[Nonempty M]
[L.Structure M]
(s : Set M)
(κ : Cardinal.{w'})
(h1 : Cardinal.aleph0 ≤ κ)
(h2 : Cardinal.lift.{w', w} (Cardinal.mk ↑s) ≤ Cardinal.lift.{w, w'} κ)
(h3 : Cardinal.lift.{w', max u v} L.card ≤ Cardinal.lift.{max u v, w'} κ)
(h4 : Cardinal.lift.{w, w'} κ ≤ Cardinal.lift.{w', w} (Cardinal.mk M))
:
∃ (S : L.ElementarySubstructure M), s ⊆ ↑S ∧ Cardinal.lift.{w', w} (Cardinal.mk ↥S) = Cardinal.lift.{w, w'} κ
The Downward Löwenheim–Skolem theorem :
If s
is a set in an L
-structure M
and κ
an infinite cardinal such that
max (#s, L.card) ≤ κ
and κ ≤ # M
, then M
has an elementary substructure containing s
of
cardinality κ
.