The Möbius function and Möbius inversion #
Main Definitions #
μis the Möbius function (spelledmoebiusin code; the notationμis available by opening the namespaceArithmeticFunction.Moebius).
Main Results #
- Several forms of Möbius inversion:
sum_eq_iff_sum_mul_moebius_eqfor functions to aCommRingsum_eq_iff_sum_smul_moebius_eqfor functions to anAddCommGroupprod_eq_iff_prod_pow_moebius_eqfor functions to aCommGroupprod_eq_iff_prod_pow_moebius_eq_of_nonzerofor functions to aCommGroupWithZero- And variants that apply when the equalities only hold on a set
S : Set ℕsuch thatm ∣ n → n ∈ S → m ∈ S: sum_eq_iff_sum_mul_moebius_eq_onfor functions to aCommRingsum_eq_iff_sum_smul_moebius_eq_onfor functions to anAddCommGroupprod_eq_iff_prod_pow_moebius_eq_onfor functions to aCommGroupprod_eq_iff_prod_pow_moebius_eq_on_of_nonzerofor functions to aCommGroupWithZero
Tags #
arithmetic functions, dirichlet convolution, divisors
μ is the Möbius function. If n is squarefree with an even number of distinct prime factors,
μ n = 1. If n is squarefree with an odd number of distinct prime factors, μ n = -1.
If n is not squarefree, μ n = 0.
Equations
- ArithmeticFunction.moebius = { toFun := fun (n : ℕ) => if Squarefree n then (-1) ^ ArithmeticFunction.cardFactors n else 0, map_zero' := ArithmeticFunction.moebius._proof_1 }
Instances For
μ is the Möbius function. If n is squarefree with an even number of distinct prime factors,
μ n = 1. If n is squarefree with an odd number of distinct prime factors, μ n = -1.
If n is not squarefree, μ n = 0.
Equations
- ArithmeticFunction.Moebius.termμ = Lean.ParserDescr.node `ArithmeticFunction.Moebius.termμ 1024 (Lean.ParserDescr.symbol "μ")
Instances For
Equations
- ArithmeticFunction.instInvertibleNatToArithmeticFunctionZeta = { invOf := ↑ArithmeticFunction.moebius, invOf_mul_self := ⋯, mul_invOf_self := ⋯ }
A unit in ArithmeticFunction R that evaluates to ζ, with inverse μ.
Equations
- ArithmeticFunction.zetaUnit = { val := ↑ArithmeticFunction.zeta, inv := ↑ArithmeticFunction.moebius, val_inv := ⋯, inv_val := ⋯ }
Instances For
Möbius inversion for functions to an AddCommGroup.
Möbius inversion for functions to a Ring.
Möbius inversion for functions to a CommGroupWithZero.
Möbius inversion for functions to an AddCommGroup, where the equalities only hold on a
well-behaved set.
Möbius inversion for functions to a CommGroupWithZero, where the equalities only hold on
a well-behaved set.