Documentation

Mathlib.NumberTheory.FLT.Polynomial

Fermat's Last Theorem for polynomials over a field #

This file states and proves the Fermat's Last Theorem for polynomials over a field. For n ≥ 3 not divisible by the characteristic of the coefficient field k and (pairwise) nonzero coprime polynomials a, b, c (over a field) with a ^ n + b ^ n = c ^ n, all polynomials must be constants.

More generally, we can prove non-solvability of the Fermat-Catalan equation: there are no non-constant polynomial solutions to the equation u * a ^ p + v * b ^ q + w * c ^ r = 0, where p, q, r ≥ 3 with p * q + q * r + r * p ≤ p * q * r , p, q, r not divisible by char k, and u, v, w are nonzero elements in k. FLT is the special case where p = q = r = n, u = v = 1, and w = -1.

The proof uses the Mason-Stothers theorem (Polynomial ABC theorem) and infinite descent (in the characteristic p case).

theorem Polynomial.flt_catalan {k : Type u_1} [Field k] [DecidableEq k] {p q r : } (hp : 0 < p) (hq : 0 < q) (hr : 0 < r) (hineq : q * r + r * p + p * q p * q * r) (chp : p 0) (chq : q 0) (chr : r 0) {a b c : Polynomial k} (ha : a 0) (hb : b 0) (hc : c 0) (hab : IsCoprime a b) {u v w : k} (hu : u 0) (hv : v 0) (hw : w 0) (heq : C u * a ^ p + C v * b ^ q + C w * c ^ r = 0) :
a.natDegree = 0 b.natDegree = 0 c.natDegree = 0

Nonsolvability of the Fermat-Catalan equation.

theorem Polynomial.flt {k : Type u_1} [Field k] [DecidableEq k] {n : } (hn : 3 n) (chn : n 0) {a b c : Polynomial k} (ha : a 0) (hb : b 0) (hc : c 0) (hab : IsCoprime a b) (heq : a ^ n + b ^ n = c ^ n) :
a.natDegree = 0 b.natDegree = 0 c.natDegree = 0
theorem fermatLastTheoremWith'_polynomial {k : Type u_1} [Field k] [DecidableEq k] {n : } (hn : 3 n) (chn : n 0) :