GCD structures on polynomials #
Definitions and basic results about polynomials over GCD domains, particularly their contents and primitive polynomials.
Main Definitions #
Let p : R[X]
.
p.content
is thegcd
of the coefficients ofp
.p.IsPrimitive
indicates thatp.content = 1
.
Main Results #
Polynomial.content_mul
: Ifp q : R[X]
, then(p * q).content = p.content * q.content
.Polynomial.NormalizedGcdMonoid
: The polynomial ring of a GCD domain is itself a GCD domain.
A polynomial is primitive when the only constant polynomials dividing it are units
Instances For
theorem
Polynomial.isPrimitive_iff_isUnit_of_C_dvd
{R : Type u_1}
[CommSemiring R]
{p : Polynomial R}
:
theorem
Polynomial.Monic.isPrimitive
{R : Type u_1}
[CommSemiring R]
{p : Polynomial R}
(hp : p.Monic)
:
p.IsPrimitive
theorem
Polynomial.IsPrimitive.ne_zero
{R : Type u_1}
[CommSemiring R]
[Nontrivial R]
{p : Polynomial R}
(hp : p.IsPrimitive)
:
p ≠ 0
theorem
Polynomial.isPrimitive_of_dvd
{R : Type u_1}
[CommSemiring R]
{p q : Polynomial R}
(hp : p.IsPrimitive)
(hq : q ∣ p)
:
q.IsPrimitive
def
Polynomial.content
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
(p : Polynomial R)
:
R
p.content
is the gcd
of the coefficients of p
.
Equations
- p.content = p.support.gcd p.coeff
Instances For
theorem
Polynomial.content_dvd_coeff
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
{p : Polynomial R}
(n : ℕ)
:
p.content ∣ p.coeff n
@[simp]
theorem
Polynomial.content_C
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
{r : R}
:
(C r).content = normalize r
@[simp]
@[simp]
theorem
Polynomial.content_X_mul
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
{p : Polynomial R}
:
@[simp]
theorem
Polynomial.content_X_pow
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
{k : ℕ}
:
@[simp]
theorem
Polynomial.content_C_mul
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
(r : R)
(p : Polynomial R)
:
@[simp]
theorem
Polynomial.content_monomial
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
{r : R}
{k : ℕ}
:
theorem
Polynomial.content_eq_zero_iff
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
{p : Polynomial R}
:
theorem
Polynomial.normalize_content
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
{p : Polynomial R}
:
normalize p.content = p.content
@[simp]
theorem
Polynomial.normUnit_content
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
{p : Polynomial R}
:
theorem
Polynomial.content_eq_gcd_range_of_lt
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
(p : Polynomial R)
(n : ℕ)
(h : p.natDegree < n)
:
p.content = (Finset.range n).gcd p.coeff
theorem
Polynomial.content_eq_gcd_range_succ
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
(p : Polynomial R)
:
p.content = (Finset.range p.natDegree.succ).gcd p.coeff
theorem
Polynomial.content_eq_gcd_leadingCoeff_content_eraseLead
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
(p : Polynomial R)
:
theorem
Polynomial.dvd_content_iff_C_dvd
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
{p : Polynomial R}
{r : R}
:
theorem
Polynomial.C_content_dvd
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
(p : Polynomial R)
:
C p.content ∣ p
theorem
Polynomial.isPrimitive_iff_content_eq_one
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
{p : Polynomial R}
:
theorem
Polynomial.IsPrimitive.content_eq_one
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
{p : Polynomial R}
(hp : p.IsPrimitive)
:
p.content = 1
noncomputable def
Polynomial.primPart
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
(p : Polynomial R)
:
The primitive part of a polynomial p
is the primitive polynomial gained by dividing p
by
p.content
. If p = 0
, then p.primPart = 1
.
Equations
- p.primPart = if p = 0 then 1 else Classical.choose ⋯
Instances For
theorem
Polynomial.eq_C_content_mul_primPart
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
(p : Polynomial R)
:
@[simp]
theorem
Polynomial.isPrimitive_primPart
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
(p : Polynomial R)
:
p.primPart.IsPrimitive
theorem
Polynomial.content_primPart
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
(p : Polynomial R)
:
p.primPart.content = 1
theorem
Polynomial.primPart_ne_zero
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
(p : Polynomial R)
:
p.primPart ≠ 0
theorem
Polynomial.natDegree_primPart
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
(p : Polynomial R)
:
p.primPart.natDegree = p.natDegree
@[simp]
theorem
Polynomial.IsPrimitive.primPart_eq
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
{p : Polynomial R}
(hp : p.IsPrimitive)
:
p.primPart = p
theorem
Polynomial.isUnit_primPart_C
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
(r : R)
:
IsUnit (C r).primPart
theorem
Polynomial.primPart_dvd
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
(p : Polynomial R)
:
p.primPart ∣ p
theorem
Polynomial.aeval_primPart_eq_zero
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
{S : Type u_2}
[Ring S]
[IsDomain S]
[Algebra R S]
[NoZeroSMulDivisors R S]
{p : Polynomial R}
{s : S}
(hpzero : p ≠ 0)
(hp : (aeval s) p = 0)
:
theorem
Polynomial.eval₂_primPart_eq_zero
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
{S : Type u_2}
[CommRing S]
[IsDomain S]
{f : R →+* S}
(hinj : Function.Injective ⇑f)
{p : Polynomial R}
{s : S}
(hpzero : p ≠ 0)
(hp : eval₂ f s p = 0)
:
theorem
Polynomial.gcd_content_eq_of_dvd_sub
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
{a : R}
{p q : Polynomial R}
(h : C a ∣ p - q)
:
theorem
Polynomial.content_mul_aux
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
{p q : Polynomial R}
:
@[simp]
theorem
Polynomial.content_mul
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
{p q : Polynomial R}
:
theorem
Polynomial.IsPrimitive.mul
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
{p q : Polynomial R}
(hp : p.IsPrimitive)
(hq : q.IsPrimitive)
:
(p * q).IsPrimitive
@[simp]
theorem
Polynomial.primPart_mul
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
{p q : Polynomial R}
(h0 : p * q ≠ 0)
:
theorem
Polynomial.IsPrimitive.dvd_primPart_iff_dvd
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
{p q : Polynomial R}
(hp : p.IsPrimitive)
(hq : q ≠ 0)
:
theorem
Polynomial.exists_primitive_lcm_of_isPrimitive
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
{p q : Polynomial R}
(hp : p.IsPrimitive)
(hq : q.IsPrimitive)
:
∃ (r : Polynomial R), r.IsPrimitive ∧ ∀ (s : Polynomial R), p ∣ s ∧ q ∣ s ↔ r ∣ s
theorem
Polynomial.dvd_iff_content_dvd_content_and_primPart_dvd_primPart
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
{p q : Polynomial R}
(hq : q ≠ 0)
:
@[instance 100]
noncomputable instance
Polynomial.normalizedGcdMonoid
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
:
theorem
Polynomial.degree_gcd_le_left
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
{p : Polynomial R}
(hp : p ≠ 0)
(q : Polynomial R)
:
theorem
Polynomial.degree_gcd_le_right
{R : Type u_1}
[CommRing R]
[IsDomain R]
[NormalizedGCDMonoid R]
(p : Polynomial R)
{q : Polynomial R}
(hq : q ≠ 0)
: