Documentation

Mathlib.RingTheory.Polynomial.Content

GCD structures on polynomials #

Definitions and basic results about polynomials over GCD domains, particularly their contents and primitive polynomials.

Main Definitions #

Let p : R[X].

Main Results #

A polynomial is primitive when the only constant polynomials dividing it are units

Equations
  • p.IsPrimitive = ∀ (r : R), Polynomial.C r pIsUnit r
Instances For
    theorem Polynomial.isPrimitive_iff_isUnit_of_C_dvd {R : Type u_1} [CommSemiring R] {p : Polynomial R} :
    p.IsPrimitive ∀ (r : R), C r pIsUnit r
    theorem Polynomial.Monic.isPrimitive {R : Type u_1} [CommSemiring R] {p : Polynomial R} (hp : p.Monic) :
    p.IsPrimitive
    theorem Polynomial.IsPrimitive.ne_zero {R : Type u_1} [CommSemiring R] [Nontrivial R] {p : Polynomial R} (hp : p.IsPrimitive) :
    p 0
    theorem Polynomial.isPrimitive_of_dvd {R : Type u_1} [CommSemiring R] {p q : Polynomial R} (hp : p.IsPrimitive) (hq : q p) :
    q.IsPrimitive

    p.content is the gcd of the coefficients of p.

    Equations
    • p.content = p.support.gcd p.coeff
    Instances For
      theorem Polynomial.content_dvd_coeff {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] {p : Polynomial R} (n : ) :
      p.content p.coeff n
      @[simp]
      theorem Polynomial.content_C {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] {r : R} :
      (C r).content = normalize r
      theorem Polynomial.content_X_mul {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] {p : Polynomial R} :
      (X * p).content = p.content
      @[simp]
      theorem Polynomial.content_X_pow {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] {k : } :
      (X ^ k).content = 1
      @[simp]
      theorem Polynomial.content_X {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] :
      X.content = 1
      theorem Polynomial.content_C_mul {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] (r : R) (p : Polynomial R) :
      (C r * p).content = normalize r * p.content
      @[simp]
      theorem Polynomial.content_monomial {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] {r : R} {k : } :
      ((monomial k) r).content = normalize r
      theorem Polynomial.content_eq_zero_iff {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] {p : Polynomial R} :
      p.content = 0 p = 0
      theorem Polynomial.normalize_content {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] {p : Polynomial R} :
      normalize p.content = p.content
      @[simp]
      theorem Polynomial.normUnit_content {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] {p : Polynomial R} :
      normUnit p.content = 1
      theorem Polynomial.content_eq_gcd_range_of_lt {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] (p : Polynomial R) (n : ) (h : p.natDegree < n) :
      p.content = (Finset.range n).gcd p.coeff
      theorem Polynomial.content_eq_gcd_range_succ {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] (p : Polynomial R) :
      p.content = (Finset.range p.natDegree.succ).gcd p.coeff
      theorem Polynomial.content_eq_gcd_leadingCoeff_content_eraseLead {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] (p : Polynomial R) :
      p.content = gcd p.leadingCoeff p.eraseLead.content
      theorem Polynomial.dvd_content_iff_C_dvd {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] {p : Polynomial R} {r : R} :
      r p.content C r p
      theorem Polynomial.C_content_dvd {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] (p : Polynomial R) :
      C p.content p
      theorem Polynomial.isPrimitive_iff_content_eq_one {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] {p : Polynomial R} :
      p.IsPrimitive p.content = 1
      theorem Polynomial.IsPrimitive.content_eq_one {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] {p : Polynomial R} (hp : p.IsPrimitive) :
      p.content = 1
      noncomputable def Polynomial.primPart {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] (p : Polynomial R) :

      The primitive part of a polynomial p is the primitive polynomial gained by dividing p by p.content. If p = 0, then p.primPart = 1.

      Equations
      Instances For
        theorem Polynomial.eq_C_content_mul_primPart {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] (p : Polynomial R) :
        p = C p.content * p.primPart
        theorem Polynomial.isPrimitive_primPart {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] (p : Polynomial R) :
        p.primPart.IsPrimitive
        theorem Polynomial.content_primPart {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] (p : Polynomial R) :
        p.primPart.content = 1
        theorem Polynomial.primPart_ne_zero {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] (p : Polynomial R) :
        p.primPart 0
        theorem Polynomial.natDegree_primPart {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] (p : Polynomial R) :
        p.primPart.natDegree = p.natDegree
        @[simp]
        theorem Polynomial.IsPrimitive.primPart_eq {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] {p : Polynomial R} (hp : p.IsPrimitive) :
        p.primPart = p
        theorem Polynomial.isUnit_primPart_C {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] (r : R) :
        IsUnit (C r).primPart
        theorem Polynomial.primPart_dvd {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] (p : Polynomial R) :
        p.primPart p
        theorem Polynomial.aeval_primPart_eq_zero {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] {S : Type u_2} [Ring S] [IsDomain S] [Algebra R S] [NoZeroSMulDivisors R S] {p : Polynomial R} {s : S} (hpzero : p 0) (hp : (aeval s) p = 0) :
        (aeval s) p.primPart = 0
        theorem Polynomial.eval₂_primPart_eq_zero {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] {S : Type u_2} [CommRing S] [IsDomain S] {f : R →+* S} (hinj : Function.Injective f) {p : Polynomial R} {s : S} (hpzero : p 0) (hp : eval₂ f s p = 0) :
        eval₂ f s p.primPart = 0
        theorem Polynomial.gcd_content_eq_of_dvd_sub {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] {a : R} {p q : Polynomial R} (h : C a p - q) :
        gcd a p.content = gcd a q.content
        theorem Polynomial.content_mul_aux {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] {p q : Polynomial R} :
        gcd (p * q).eraseLead.content p.leadingCoeff = gcd (p.eraseLead * q).content p.leadingCoeff
        @[simp]
        theorem Polynomial.content_mul {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] {p q : Polynomial R} :
        (p * q).content = p.content * q.content
        theorem Polynomial.IsPrimitive.mul {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] {p q : Polynomial R} (hp : p.IsPrimitive) (hq : q.IsPrimitive) :
        (p * q).IsPrimitive
        @[simp]
        theorem Polynomial.primPart_mul {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] {p q : Polynomial R} (h0 : p * q 0) :
        (p * q).primPart = p.primPart * q.primPart
        theorem Polynomial.IsPrimitive.dvd_primPart_iff_dvd {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] {p q : Polynomial R} (hp : p.IsPrimitive) (hq : q 0) :
        p q.primPart p q
        theorem Polynomial.exists_primitive_lcm_of_isPrimitive {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] {p q : Polynomial R} (hp : p.IsPrimitive) (hq : q.IsPrimitive) :
        ∃ (r : Polynomial R), r.IsPrimitive ∀ (s : Polynomial R), p s q s r s
        theorem Polynomial.dvd_iff_content_dvd_content_and_primPart_dvd_primPart {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] {p q : Polynomial R} (hq : q 0) :
        p q p.content q.content p.primPart q.primPart
        theorem Polynomial.degree_gcd_le_left {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] {p : Polynomial R} (hp : p 0) (q : Polynomial R) :
        (gcd p q).degree p.degree
        theorem Polynomial.degree_gcd_le_right {R : Type u_1} [CommRing R] [IsDomain R] [NormalizedGCDMonoid R] (p : Polynomial R) {q : Polynomial R} (hq : q 0) :
        (gcd p q).degree q.degree