Derivative of Γ at positive integers #
We prove the formula for the derivative of Real.Gamma
at a positive integer:
deriv Real.Gamma (n + 1) = Nat.factorial n * (-Real.eulerMascheroniConstant + harmonic n)
theorem
Real.hasDerivAt_Gamma_nat
(n : ℕ)
:
HasDerivAt Gamma (↑n.factorial * (-eulerMascheroniConstant + ↑(harmonic n))) (↑n + 1)
theorem
Real.hasDerivAt_Gamma_one_half :
HasDerivAt Gamma (-√Real.pi * (eulerMascheroniConstant + 2 * log 2)) (1 / 2)
theorem
Complex.hasDerivAt_Gamma_nat
(n : ℕ)
:
HasDerivAt Gamma (↑n.factorial * (-↑Real.eulerMascheroniConstant + ↑(harmonic n))) (↑n + 1)
theorem
Complex.hasDerivAt_Gamma_one_half :
HasDerivAt Gamma (-↑√Real.pi * (↑Real.eulerMascheroniConstant + 2 * log 2)) (1 / 2)
theorem
Complex.hasDerivAt_Gammaℂ_one :
HasDerivAt Gammaℂ (-(↑Real.eulerMascheroniConstant + log (2 * ↑Real.pi)) / ↑Real.pi) 1
theorem
Complex.hasDerivAt_Gammaℝ_one :
HasDerivAt Gammaℝ (-(↑Real.eulerMascheroniConstant + log (4 * ↑Real.pi)) / 2) 1