Definition of (Non-archimedean) local fields #
Given a topological field K
equipped with an equivalence class of valuations (a ValuativeRel
),
we say that it is a non-archimedean local field if the topology comes from the given valuation,
and it is locally compact and non-discrete.
class
IsNonarchimedeanLocalField
(K : Type u_1)
[Field K]
[ValuativeRel K]
[TopologicalSpace K]
extends IsValuativeTopology K, LocallyCompactSpace K, ValuativeRel.IsNontrivial K :
Given a topological field K
equipped with an equivalence class of valuations (a ValuativeRel
),
we say that it is a non-archimedean local field if the topology comes from the given valuation,
and it is locally compact and non-discrete.
This implies the following typeclasses via inferInstance
IsValuativeTopology K
LocallyCompactSpace K
IsTopologicalDivisionRing K
ValuativeRel.IsNontrivial K
ValuativeRel.IsRankLeOne K
ValuativeRel.IsDiscrete K
IsDiscreteValuationRing 𝒪[K]
Finite 𝓀[K]
Assuming we have a compatible UniformSpace K
instance
(e.g. via IsTopologicalAddGroup.toUniformSpace
and isUniformAddGroup_of_addCommGroup
) then
CompleteSpace K
CompleteSpace 𝒪[K]
- condition : ∃ (γ : ValueGroupWithZero K), γ ≠ 0 ∧ γ ≠ 1
Instances
instance
IsNonarchimedeanLocalField.instIsTopologicalDivisionRing
(K : Type u_1)
[Field K]
[ValuativeRel K]
[TopologicalSpace K]
[IsNonarchimedeanLocalField K]
:
theorem
IsNonarchimedeanLocalField.isCompact_closedBall
(K : Type u_1)
[Field K]
[ValuativeRel K]
[TopologicalSpace K]
[IsNonarchimedeanLocalField K]
(γ : ValuativeRel.ValueGroupWithZero K)
:
instance
IsNonarchimedeanLocalField.instCompatibleValueGroupWithZeroV
(K : Type u_2)
[Field K]
[ValuativeRel K]
[UniformSpace K]
[IsUniformAddGroup K]
[IsValuativeTopology K]
:
noncomputable def
IsNonarchimedeanLocalField.valueGroupWithZeroIsoInt
(K : Type u_1)
[Field K]
[ValuativeRel K]
[TopologicalSpace K]
[IsNonarchimedeanLocalField K]
:
The value group of a local field is (uniquely) isomorphic to ℤᵐ⁰
.
Equations
Instances For
instance
IsNonarchimedeanLocalField.instIsDiscrete
(K : Type u_1)
[Field K]
[ValuativeRel K]
[TopologicalSpace K]
[IsNonarchimedeanLocalField K]
:
instance
IsNonarchimedeanLocalField.instIsRankLeOne
(K : Type u_1)
[Field K]
[ValuativeRel K]
[TopologicalSpace K]
[IsNonarchimedeanLocalField K]
:
instance
IsNonarchimedeanLocalField.instCompleteSpace
(K : Type u_1)
[Field K]
[ValuativeRel K]
[UniformSpace K]
[IsUniformAddGroup K]
[IsNonarchimedeanLocalField K]
: