Necessary and sufficient conditions for a locally compact nonarchimedean normed field #
Main Definitions #
totallyBounded_iff_finite_residueField
: when the valuation ring is a DVR, it is totally bounded iff the residue field is finite.
Tags #
norm, nonarchimedean, rank one, compact, locally compact
@[simp]
theorem
NormedField.v_eq_valuation
{K : Type u_1}
[NontriviallyNormedField K]
[IsUltrametricDist K]
(x : K)
:
Valued.v x = NormedField.valuation x
theorem
Valued.integer.mem_iff
{K : Type u_1}
[NontriviallyNormedField K]
[IsUltrametricDist K]
{x : K}
:
An element is in the valuation ring if the norm is bounded by 1. This is a variant of
Valuation.mem_integer_iff
, phrased using norms instead of the valuation.
theorem
Valued.integer.norm_le_one
{K : Type u_1}
[NontriviallyNormedField K]
[IsUltrametricDist K]
(x : ↥(Valued.integer K))
:
@[simp]
theorem
Valued.integer.norm_coe_unit
{K : Type u_1}
[NontriviallyNormedField K]
[IsUltrametricDist K]
(u : (↥(Valued.integer K))ˣ)
:
theorem
Valued.integer.norm_unit
{K : Type u_1}
[NontriviallyNormedField K]
[IsUltrametricDist K]
(u : (↥(Valued.integer K))ˣ)
:
theorem
Valued.integer.isUnit_iff_norm_eq_one
{K : Type u_1}
[NontriviallyNormedField K]
[IsUltrametricDist K]
{u : ↥(Valued.integer K)}
:
theorem
Valued.integer.norm_irreducible_lt_one
{K : Type u_1}
[NontriviallyNormedField K]
[IsUltrametricDist K]
{ϖ : ↥(Valued.integer K)}
(h : Irreducible ϖ)
:
theorem
Valued.integer.norm_irreducible_pos
{K : Type u_1}
[NontriviallyNormedField K]
[IsUltrametricDist K]
{ϖ : ↥(Valued.integer K)}
(h : Irreducible ϖ)
:
theorem
Valued.integer.coe_span_singleton_eq_closedBall
{K : Type u_1}
[NontriviallyNormedField K]
[IsUltrametricDist K]
(x : ↥(Valued.integer K))
:
↑(Ideal.span {x}) = Metric.closedBall 0 ‖x‖
theorem
Irreducible.maximalIdeal_eq_closedBall
{K : Type u_1}
[NontriviallyNormedField K]
[IsUltrametricDist K]
[IsDiscreteValuationRing ↥(Valued.integer K)]
{ϖ : ↥(Valued.integer K)}
(h : Irreducible ϖ)
:
↑(Valued.maximalIdeal K) = Metric.closedBall 0 ‖ϖ‖
theorem
Irreducible.maximalIdeal_pow_eq_closedBall_pow
{K : Type u_1}
[NontriviallyNormedField K]
[IsUltrametricDist K]
[IsDiscreteValuationRing ↥(Valued.integer K)]
{ϖ : ↥(Valued.integer K)}
(h : Irreducible ϖ)
(n : ℕ)
:
↑(Valued.maximalIdeal K ^ n) = Metric.closedBall 0 (‖ϖ‖ ^ n)
theorem
Valued.integer.finite_quotient_maximalIdeal_pow_of_finite_residueField
{K : Type u_2}
[NontriviallyNormedField K]
[IsUltrametricDist K]
[IsDiscreteValuationRing ↥(Valued.integer K)]
(h : Finite (Valued.ResidueField K))
(n : ℕ)
:
Finite (↥(Valued.integer K) ⧸ Valued.maximalIdeal K ^ n)
theorem
Valued.integer.totallyBounded_iff_finite_residueField
{K : Type u_2}
[NontriviallyNormedField K]
[IsUltrametricDist K]
[IsDiscreteValuationRing ↥(Valued.integer K)]
:
TotallyBounded Set.univ ↔ Finite (Valued.ResidueField K)