Documentation

Mathlib.RingTheory.Valuation.RankOne

Rank one valuations #

We define rank one valuations.

Main Definitions #

Tags #

valuation, rank one

class Valuation.RankOne {R : Type u_1} [Ring R] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] (v : Valuation R Γ₀) :
Type u_2

A valuation has rank one if it is nontrivial and its image is contained in ℝ≥0. Note that this class includes the data of an inclusion morphism Γ₀ → ℝ≥0.

Instances
    theorem Valuation.RankOne.strictMono {R : Type u_1} [Ring R] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] (v : Valuation R Γ₀) [v.RankOne] :
    theorem Valuation.RankOne.nontrivial {R : Type u_1} [Ring R] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] (v : Valuation R Γ₀) [v.RankOne] :
    ∃ (r : R), v r 0 v r 1
    theorem Valuation.RankOne.zero_of_hom_zero {R : Type u_1} [Ring R] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] (v : Valuation R Γ₀) [v.RankOne] {x : Γ₀} (hx : (Valuation.RankOne.hom v) x = 0) :
    x = 0

    If v is a rank one valuation and x : Γ₀ has image 0 under RankOne.hom v, then x = 0.

    theorem Valuation.RankOne.hom_eq_zero_iff {R : Type u_1} [Ring R] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] (v : Valuation R Γ₀) [v.RankOne] {x : Γ₀} :

    If v is a rank one valuation, thenx : Γ₀ has image 0 under RankOne.hom v if and only if x = 0.

    def Valuation.RankOne.unit {R : Type u_1} [Ring R] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] (v : Valuation R Γ₀) [v.RankOne] :
    Γ₀ˣ

    A nontrivial unit of Γ₀, given that there exists a rank one v : Valuation R Γ₀.

    Equations
    Instances For
      theorem Valuation.RankOne.unit_ne_one {R : Type u_1} [Ring R] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] (v : Valuation R Γ₀) [v.RankOne] :

      A proof that RankOne.unit v ≠ 1.