Rank one valuations #
We define rank one valuations.
Main Definitions #
RankOne
: A valuationv
has rank one if it is nontrivial and its image is contained inℝ≥0
. Note that this class contains the data of the inclusion of the codomain ofv
intoℝ≥0
.
Tags #
valuation, rank one
class
Valuation.RankOne
{R : Type u_1}
[Ring R]
{Γ₀ : Type u_2}
[LinearOrderedCommGroupWithZero Γ₀]
(v : Valuation R Γ₀)
:
Type u_2
A valuation has rank one if it is nontrivial and its image is contained in ℝ≥0
.
Note that this class includes the data of an inclusion morphism Γ₀ → ℝ≥0
.
The inclusion morphism from
Γ₀
toℝ≥0
.- strictMono' : StrictMono ⇑(Valuation.RankOne.hom v)
Instances
theorem
Valuation.RankOne.strictMono
{R : Type u_1}
[Ring R]
{Γ₀ : Type u_2}
[LinearOrderedCommGroupWithZero Γ₀]
(v : Valuation R Γ₀)
[v.RankOne]
:
theorem
Valuation.RankOne.nontrivial
{R : Type u_1}
[Ring R]
{Γ₀ : Type u_2}
[LinearOrderedCommGroupWithZero Γ₀]
(v : Valuation R Γ₀)
[v.RankOne]
:
theorem
Valuation.RankOne.zero_of_hom_zero
{R : Type u_1}
[Ring R]
{Γ₀ : Type u_2}
[LinearOrderedCommGroupWithZero Γ₀]
(v : Valuation R Γ₀)
[v.RankOne]
{x : Γ₀}
(hx : (Valuation.RankOne.hom v) x = 0)
:
x = 0
If v
is a rank one valuation and x : Γ₀
has image 0
under RankOne.hom v
, then
x = 0
.
theorem
Valuation.RankOne.hom_eq_zero_iff
{R : Type u_1}
[Ring R]
{Γ₀ : Type u_2}
[LinearOrderedCommGroupWithZero Γ₀]
(v : Valuation R Γ₀)
[v.RankOne]
{x : Γ₀}
:
(Valuation.RankOne.hom v) x = 0 ↔ x = 0
If v
is a rank one valuation, thenx : Γ₀
has image 0
under RankOne.hom v
if and
only if x = 0
.
def
Valuation.RankOne.unit
{R : Type u_1}
[Ring R]
{Γ₀ : Type u_2}
[LinearOrderedCommGroupWithZero Γ₀]
(v : Valuation R Γ₀)
[v.RankOne]
:
Γ₀ˣ
A nontrivial unit of Γ₀
, given that there exists a rank one v : Valuation R Γ₀
.
Equations
- Valuation.RankOne.unit v = Units.mk0 (v ⋯.choose) ⋯
Instances For
theorem
Valuation.RankOne.unit_ne_one
{R : Type u_1}
[Ring R]
{Γ₀ : Type u_2}
[LinearOrderedCommGroupWithZero Γ₀]
(v : Valuation R Γ₀)
[v.RankOne]
:
A proof that RankOne.unit v ≠ 1
.