Documentation

Mathlib.Topology.Algebra.Valued.NormedValued

Correspondence between nontrivial nonarchimedean norms and rank one valuations #

Nontrivial nonarchimedean norms correspond to rank one valuations.

Main Definitions #

Tags #

norm, nonarchimedean, nontrivial, valuation, rank one

The valuation on a nonarchimedean normed field K defined as nnnorm.

Equations
Instances For
    @[simp]
    theorem NormedField.valuation_apply {K : Type u_1} [hK : NormedField K] [IsUltrametricDist K] (x : K) :
    valuation x = x‖₊

    The valued field structure on a nonarchimedean normed field K, determined by the norm.

    Equations
    Instances For
      def Valued.norm {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] :
      L

      The norm function determined by a rank one valuation on a field L.

      Equations
      Instances For
        theorem Valued.norm_nonneg {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] (x : L) :
        0 norm x
        theorem Valued.norm_add_le {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] (x y : L) :
        norm (x + y) norm x norm y
        theorem Valued.norm_eq_zero {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] {x : L} (hx : norm x = 0) :
        x = 0
        def Valued.toNormedField (L : Type u_1) [Field L] (Γ₀ : Type u_2) [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] :

        The normed field structure determined by a rank one valuation.

        Equations
        Instances For
          theorem Valued.isNonarchimedean_norm (L : Type u_1) [Field L] (Γ₀ : Type u_2) [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] :
          IsNonarchimedean fun (x : L) => x
          instance Valued.instIsUltrametricDist (L : Type u_1) [Field L] (Γ₀ : Type u_2) [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] :
          @[simp]
          theorem Valued.toNormedField.norm_le_iff {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] {x x' : L} :
          x x' v x v x'
          @[simp]
          theorem Valued.toNormedField.norm_lt_iff {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] {x x' : L} :
          x < x' v x < v x'
          @[simp]
          theorem Valued.toNormedField.norm_le_one_iff {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] {x : L} :
          x 1 v x 1
          @[simp]
          theorem Valued.toNormedField.norm_lt_one_iff {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] {x : L} :
          x < 1 v x < 1
          @[simp]
          theorem Valued.toNormedField.one_le_norm_iff {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] {x : L} :
          1 x 1 v x
          @[simp]
          theorem Valued.toNormedField.one_lt_norm_iff {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] {x : L} :
          1 < x 1 < v x
          def Valued.toNontriviallyNormedField {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] :

          The nontrivially normed field structure determined by a rank one valuation.

          Equations
          Instances For