Documentation

Mathlib.Topology.Algebra.Valued.NormedValued

Correspondence between nontrivial nonarchimedean norms and rank one valuations #

Nontrivial nonarchimedean norms correspond to rank one valuations.

Main Definitions #

Tags #

norm, nonarchimedean, nontrivial, valuation, rank one

The valuation on a nonarchimedean normed field K defined as nnnorm.

Equations
  • NormedField.valuation = { toFun := nnnorm, map_zero' := , map_one' := , map_mul' := , map_add_le_max' := }
Instances For
    @[simp]
    theorem NormedField.valuation_apply {K : Type u_1} [hK : NormedField K] [IsUltrametricDist K] (x : K) :
    NormedField.valuation x = x‖₊

    The valued field structure on a nonarchimedean normed field K, determined by the norm.

    Equations
    • NormedField.toValued = Valued.mk NormedField.valuation
    Instances For
      instance NormedField.instRankOneNNRealValuation {K : Type u_2} [NontriviallyNormedField K] [IsUltrametricDist K] :
      NormedField.valuation.RankOne
      Equations
      def Valued.norm {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : Valued.v.RankOne] :
      L

      The norm function determined by a rank one valuation on a field L.

      Equations
      Instances For
        theorem Valued.norm_nonneg {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : Valued.v.RankOne] (x : L) :
        theorem Valued.norm_add_le {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : Valued.v.RankOne] (x y : L) :
        theorem Valued.norm_eq_zero {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : Valued.v.RankOne] {x : L} (hx : Valued.norm x = 0) :
        x = 0
        def Valued.toNormedField (L : Type u_1) [Field L] (Γ₀ : Type u_2) [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : Valued.v.RankOne] :

        The normed field structure determined by a rank one valuation.

        Equations
        Instances For
          theorem Valued.isNonarchimedean_norm (L : Type u_1) [Field L] (Γ₀ : Type u_2) [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : Valued.v.RankOne] :
          IsNonarchimedean fun (x : L) => x
          instance Valued.instIsUltrametricDist (L : Type u_1) [Field L] (Γ₀ : Type u_2) [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : Valued.v.RankOne] :
          Equations
          • =
          theorem Valued.coe_valuation_eq_rankOne_hom_comp_valuation (L : Type u_1) [Field L] (Γ₀ : Type u_2) [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : Valued.v.RankOne] :
          NormedField.valuation = (Valuation.RankOne.hom Valued.v) Valued.v
          @[simp]
          theorem Valued.toNormedField.norm_le_iff {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : Valued.v.RankOne] {x x' : L} :
          x x' Valued.v x Valued.v x'
          @[simp]
          theorem Valued.toNormedField.norm_lt_iff {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : Valued.v.RankOne] {x x' : L} :
          x < x' Valued.v x < Valued.v x'
          @[simp]
          theorem Valued.toNormedField.norm_le_one_iff {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : Valued.v.RankOne] {x : L} :
          x 1 Valued.v x 1
          @[simp]
          theorem Valued.toNormedField.norm_lt_one_iff {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : Valued.v.RankOne] {x : L} :
          x < 1 Valued.v x < 1
          @[simp]
          theorem Valued.toNormedField.one_le_norm_iff {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : Valued.v.RankOne] {x : L} :
          1 x 1 Valued.v x
          @[simp]
          theorem Valued.toNormedField.one_lt_norm_iff {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : Valued.v.RankOne] {x : L} :
          1 < x 1 < Valued.v x
          def Valued.toNontriviallyNormedField {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : Valued.v.RankOne] :

          The nontrivially normed field structure determined by a rank one valuation.

          Equations
          Instances For