Documentation

Mathlib.NumberTheory.ModularForms.ArithmeticSubgroups

Arithmetic subgroups of GL(2, โ„) #

We define a subgroup of GL (Fin 2) โ„ to be arithmetic if it is commensurable with the image of SL(2, โ„ค).

class Subgroup.HasDetPlusMinusOne {n : Type u_1} [Fintype n] [DecidableEq n] {R : Type u_2} [CommRing R] (ฮ“ : Subgroup (GL n R)) :

Typeclass saying that a subgroup of GL(2, โ„) has determinant contained in {ยฑ1}. Necessary so that the typeclass system can detect when the slash action is multiplicative.

Instances
    theorem Subgroup.HasDetPlusMinusOne.abs_det {n : Type u_1} [Fintype n] [DecidableEq n] {R : Type u_2} [CommRing R] {ฮ“ : Subgroup (GL n R)} [LinearOrder R] [IsOrderedRing R] [ฮ“.HasDetPlusMinusOne] {g : GL n R} (hg : g โˆˆ ฮ“) :
    class Subgroup.HasDetOne {n : Type u_1} [Fintype n] [DecidableEq n] {R : Type u_2} [CommRing R] (ฮ“ : Subgroup (GL n R)) :

    Typeclass saying that a subgroup of GL(n, R) is contained in SL(n, R). Necessary so that the typeclass system can detect when the slash action is โ„‚-linear.

    Instances
      instance Subgroup.instHasDetPlusMinusOneOfHasDetOne {n : Type u_1} [Fintype n] [DecidableEq n] {R : Type u_2} [CommRing R] (ฮ“ : Subgroup (GL n R)) [ฮ“.HasDetOne] :

      The image of the modular group SL(2, โ„ค), as a subgroup of GL(2, โ„).

      Equations
      Instances For

        Coercion from subgroups of SL(2, โ„ค) to subgroups of GL(2, โ„) by mapping along the obvious inclusion homomorphism.

        Equations
        class Subgroup.IsArithmetic (๐’ข : Subgroup (GL (Fin 2) โ„)) :

        A subgroup of GL(2, โ„) is arithmetic if it is commensurable with the image of SL(2, โ„ค).

        Instances

          If ฮ“ is arithmetic, its preimage in SL(2, โ„ค) has finite index.