Boundedness and vanishing at cusps #
We define the notions of "bounded at c" and "vanishing at c" for functions on ℍ
, where c
is
an element of OnePoint ℝ
.
theorem
UpperHalfPlane.IsZeroAtImInfty.slash
{g : GL (Fin 2) ℝ}
{f : UpperHalfPlane → ℂ}
(k : ℤ)
(hg : ↑g 1 0 = 0)
(hf : IsZeroAtImInfty f)
:
IsZeroAtImInfty (SlashAction.map ℂ k g f)
theorem
UpperHalfPlane.IsBoundedAtImInfty.slash
{g : GL (Fin 2) ℝ}
{f : UpperHalfPlane → ℂ}
(k : ℤ)
(hg : ↑g 1 0 = 0)
(hf : IsBoundedAtImInfty f)
:
IsBoundedAtImInfty (SlashAction.map ℂ k g f)
We say f
is bounded at c
if, for all g
with g • ∞ = c
, the function f ∣[k] g
is
bounded at ∞
.
Equations
- c.IsBoundedAt f k = ∀ (g : GL (Fin 2) ℝ), g • OnePoint.infty = c → UpperHalfPlane.IsBoundedAtImInfty (SlashAction.map ℂ k g f)
Instances For
We say f
is zero at c
if, for all g
with g • ∞ = c
, the function f ∣[k] g
is
zero at ∞
.
Equations
- c.IsZeroAt f k = ∀ (g : GL (Fin 2) ℝ), g • OnePoint.infty = c → UpperHalfPlane.IsZeroAtImInfty (SlashAction.map ℂ k g f)
Instances For
theorem
OnePoint.IsBoundedAt.smul_iff
{c : OnePoint ℝ}
{f : UpperHalfPlane → ℂ}
{k : ℤ}
{g : GL (Fin 2) ℝ}
:
theorem
OnePoint.IsBoundedAt.add
{c : OnePoint ℝ}
{f : UpperHalfPlane → ℂ}
{k : ℤ}
{f' : UpperHalfPlane → ℂ}
(hf : c.IsBoundedAt f k)
(hf' : c.IsBoundedAt f' k)
:
c.IsBoundedAt (f + f') k
theorem
OnePoint.IsZeroAt.add
{c : OnePoint ℝ}
{f : UpperHalfPlane → ℂ}
{k : ℤ}
{f' : UpperHalfPlane → ℂ}
(hf : c.IsZeroAt f k)
(hf' : c.IsZeroAt f' k)
:
theorem
OnePoint.isBoundedAt_iff_exists_SL2Z
{c : OnePoint ℝ}
{f : UpperHalfPlane → ℂ}
{k : ℤ}
(hc : IsCusp c (Matrix.SpecialLinearGroup.mapGL ℝ).range)
:
c.IsBoundedAt f k ↔ ∃ (γ : Matrix.SpecialLinearGroup (Fin 2) ℤ),
(Matrix.SpecialLinearGroup.mapGL ℝ) γ • infty = c ∧ UpperHalfPlane.IsBoundedAtImInfty (SlashAction.map ℂ k γ f)
theorem
OnePoint.isZeroAt_iff_exists_SL2Z
{c : OnePoint ℝ}
{f : UpperHalfPlane → ℂ}
{k : ℤ}
(hc : IsCusp c (Matrix.SpecialLinearGroup.mapGL ℝ).range)
:
c.IsZeroAt f k ↔ ∃ (γ : Matrix.SpecialLinearGroup (Fin 2) ℤ),
(Matrix.SpecialLinearGroup.mapGL ℝ) γ • infty = c ∧ UpperHalfPlane.IsZeroAtImInfty (SlashAction.map ℂ k γ f)
theorem
OnePoint.isBoundedAt_iff_forall_SL2Z
{c : OnePoint ℝ}
{f : UpperHalfPlane → ℂ}
{k : ℤ}
(hc : IsCusp c (Matrix.SpecialLinearGroup.mapGL ℝ).range)
:
c.IsBoundedAt f k ↔ ∀ (γ : Matrix.SpecialLinearGroup (Fin 2) ℤ),
(Matrix.SpecialLinearGroup.mapGL ℝ) γ • infty = c → UpperHalfPlane.IsBoundedAtImInfty (SlashAction.map ℂ k γ f)
theorem
OnePoint.isZeroAt_iff_forall_SL2Z
{c : OnePoint ℝ}
{f : UpperHalfPlane → ℂ}
{k : ℤ}
(hc : IsCusp c (Matrix.SpecialLinearGroup.mapGL ℝ).range)
:
c.IsZeroAt f k ↔ ∀ (γ : Matrix.SpecialLinearGroup (Fin 2) ℤ),
(Matrix.SpecialLinearGroup.mapGL ℝ) γ • infty = c → UpperHalfPlane.IsZeroAtImInfty (SlashAction.map ℂ k γ f)