Documentation

Mathlib.NumberTheory.ModularForms.BoundedAtCusp

Boundedness and vanishing at cusps #

We define the notions of "bounded at c" and "vanishing at c" for functions on , where c is an element of OnePoint.

theorem UpperHalfPlane.IsZeroAtImInfty.slash {g : GL (Fin 2) } {f : UpperHalfPlane} (k : ) (hg : g 1 0 = 0) (hf : IsZeroAtImInfty f) :

We say f is bounded at c if, for all g with g • ∞ = c, the function f ∣[k] g is bounded at .

Equations
Instances For

    We say f is zero at c if, for all g with g • ∞ = c, the function f ∣[k] g is zero at .

    Equations
    Instances For
      theorem OnePoint.IsZeroAt.smul_iff {c : OnePoint } {f : UpperHalfPlane} {k : } {g : GL (Fin 2) } :
      (g c).IsZeroAt f k c.IsZeroAt (SlashAction.map k g f) k
      theorem OnePoint.IsBoundedAt.add {c : OnePoint } {f : UpperHalfPlane} {k : } {f' : UpperHalfPlane} (hf : c.IsBoundedAt f k) (hf' : c.IsBoundedAt f' k) :
      c.IsBoundedAt (f + f') k
      theorem OnePoint.IsZeroAt.add {c : OnePoint } {f : UpperHalfPlane} {k : } {f' : UpperHalfPlane} (hf : c.IsZeroAt f k) (hf' : c.IsZeroAt f' k) :
      c.IsZeroAt (f + f') k

      To check that f is bounded at c, it suffices for f ∣[k] g to be bounded at for any single g with g • ∞ = c.

      To check that f is zero at c, it suffices for f ∣[k] g to be zero at for any single g with g • ∞ = c.