Documentation

Mathlib.Analysis.Complex.UpperHalfPlane.FunctionsBoundedAtInfty

Bounded at infinity #

For complex valued functions on the upper half plane, this file defines the filter UpperHalfPlane.atImInfty required for defining when functions are bounded at infinity and zero at infinity. Both of which are relevant for defining modular forms.

theorem UpperHalfPlane.atImInfty_basis :
atImInfty.HasBasis (fun (x : ) => True) fun (i : ) => im ⁻¹' Set.Ici i
theorem UpperHalfPlane.atImInfty_mem (S : Set UpperHalfPlane) :
S atImInfty ∃ (A : ), ∀ (z : UpperHalfPlane), A z.imz S

A function f : ℍ → α is bounded at infinity if it is bounded along atImInfty.

Equations
Instances For

    A function f : ℍ → α is zero at infinity it is zero along atImInfty.

    Equations
    Instances For

      Module of functions that are zero at infinity.

      Equations
      Instances For
        theorem UpperHalfPlane.isBoundedAtImInfty_iff {α : Type u_1} [Norm α] {f : UpperHalfPlaneα} :
        IsBoundedAtImInfty f ∃ (M : ) (A : ), ∀ (z : UpperHalfPlane), A z.imf z M
        @[deprecated UpperHalfPlane.isBoundedAtImInfty_iff (since := "2024-08-27")]
        theorem bounded_mem {α : Type u_1} [Norm α] {f : UpperHalfPlaneα} :
        UpperHalfPlane.IsBoundedAtImInfty f ∃ (M : ) (A : ), ∀ (z : UpperHalfPlane), A z.imf z M

        Alias of UpperHalfPlane.isBoundedAtImInfty_iff.

        theorem UpperHalfPlane.isZeroAtImInfty_iff {α : Type u_1} [SeminormedAddGroup α] {f : UpperHalfPlaneα} :
        IsZeroAtImInfty f ∀ (ε : ), 0 < ε∃ (A : ), ∀ (z : UpperHalfPlane), A z.imf z ε
        @[deprecated UpperHalfPlane.isZeroAtImInfty_iff (since := "2024-08-27")]
        theorem zero_at_im_infty {α : Type u_1} [SeminormedAddGroup α] {f : UpperHalfPlaneα} :
        UpperHalfPlane.IsZeroAtImInfty f ∀ (ε : ), 0 < ε∃ (A : ), ∀ (z : UpperHalfPlane), A z.imf z ε

        Alias of UpperHalfPlane.isZeroAtImInfty_iff.