Documentation

Mathlib.Analysis.Complex.UpperHalfPlane.Topology

Topology on the upper half plane #

In this file we introduce a TopologicalSpace structure on the upper half plane and provide various instances.

@[deprecated UpperHalfPlane.isOpenEmbedding_coe (since := "2024-10-18")]

Alias of UpperHalfPlane.isOpenEmbedding_coe.

@[deprecated UpperHalfPlane.isEmbedding_coe (since := "2024-10-26")]

Alias of UpperHalfPlane.isEmbedding_coe.

The vertical strip of width A and height B, defined by elements whose real part has absolute value less than or equal to A and imaginary part is at least B.

Equations
Instances For
    theorem UpperHalfPlane.verticalStrip_mono {A B A' B' : } (hA : A A') (hB : B' B) :
    theorem UpperHalfPlane.ModularGroup_T_zpow_mem_verticalStrip (z : UpperHalfPlane) {N : } (hn : 0 < N) :
    ∃ (n : ), ModularGroup.T ^ (N * n) z verticalStrip (↑N) z.im

    Extend a function on arbitrarily to a function on all of .

    Equations
    Instances For
      theorem UpperHalfPlane.ofComplex_apply_eq_ite (w : ) :
      ofComplex w = if hw : 0 < w.im then w, hw else Classical.choice
      theorem UpperHalfPlane.ofComplex_apply_of_im_pos {z : } (hz : 0 < z.im) :
      ofComplex z = z, hz
      theorem UpperHalfPlane.ofComplex_apply_eq_of_im_nonpos {w w' : } (hw : w.im 0) (hw' : w'.im 0) :
      ofComplex w = ofComplex w'
      theorem UpperHalfPlane.comp_ofComplex_of_im_pos (f : UpperHalfPlane) (z : ) (hz : 0 < z.im) :
      (f ofComplex) z = f z, hz
      theorem UpperHalfPlane.comp_ofComplex_of_im_le_zero (f : UpperHalfPlane) (z z' : ) (hz : z.im 0) (hz' : z'.im 0) :
      (f ofComplex) z = (f ofComplex) z'