Documentation

Mathlib.Analysis.Complex.UpperHalfPlane.Topology

Topology on the upper half plane #

In this file we introduce a TopologicalSpace structure on the upper half plane and provide various instances.

theorem Continuous.upperHalfPlaneMk {X : Type u_1} [TopologicalSpace X] {f : X} (hf : Continuous f) (hf₀ : ∀ (x : X), 0 < (f x).im) :
Continuous fun (x : X) => { coe := f x, coe_im_pos := }

Each element of GL(2, ℝ) defines a continuous map ℍ → ℍ.

The vertical strip of width A and height B, defined by elements whose real part has absolute value less than or equal to A and imaginary part is at least B.

Equations
Instances For
    theorem UpperHalfPlane.verticalStrip_mono {A B A' B' : } (hA : A A') (hB : B' B) :

    Extend a function on arbitrarily to a function on all of .

    Equations
    Instances For
      theorem UpperHalfPlane.ofComplex_apply_eq_ite (w : ) :
      ofComplex w = if hw : 0 < w.im then { coe := w, coe_im_pos := hw } else Classical.choice
      theorem UpperHalfPlane.ofComplex_apply_of_im_pos {z : } (hz : 0 < z.im) :
      ofComplex z = { coe := z, coe_im_pos := hz }
      theorem UpperHalfPlane.ofComplex_apply_eq_of_im_nonpos {w w' : } (hw : w.im 0) (hw' : w'.im 0) :
      ofComplex w = ofComplex w'
      theorem UpperHalfPlane.comp_ofComplex_of_im_pos (f : UpperHalfPlane) (z : ) (hz : 0 < z.im) :
      (f ofComplex) z = f { coe := z, coe_im_pos := hz }
      theorem UpperHalfPlane.comp_ofComplex_of_im_le_zero (f : UpperHalfPlane) (z z' : ) (hz : z.im 0) (hz' : z'.im 0) :
      (f ofComplex) z = (f ofComplex) z'