Topology on the upper half plane #
In this file we introduce a TopologicalSpace
structure on the upper half plane and provide
various instances.
Equations
- UpperHalfPlane.instTopologicalSpace = instTopologicalSpaceSubtype
@[deprecated UpperHalfPlane.isOpenEmbedding_coe]
Alias of UpperHalfPlane.isOpenEmbedding_coe
.
@[deprecated UpperHalfPlane.isEmbedding_coe]
Alias of UpperHalfPlane.isEmbedding_coe
.
The vertical strip of width A
and height B
, defined by elements whose real part has absolute
value less than or equal to A
and imaginary part is at least B
.
Equations
- UpperHalfPlane.verticalStrip A B = {z : UpperHalfPlane | |z.re| ≤ A ∧ B ≤ z.im}
Instances For
theorem
UpperHalfPlane.subset_verticalStrip_of_isCompact
{K : Set UpperHalfPlane}
(hK : IsCompact K)
:
theorem
UpperHalfPlane.ModularGroup_T_zpow_mem_verticalStrip
(z : UpperHalfPlane)
{N : ℕ}
(hn : 0 < N)
:
∃ (n : ℤ), ModularGroup.T ^ (↑N * n) • z ∈ UpperHalfPlane.verticalStrip (↑N) z.im
Extend a function on ℍ
arbitrarily to a function on all of ℂ
.
Equations
- UpperHalfPlane.«term↑ₕ_» = Lean.ParserDescr.node `UpperHalfPlane.«term↑ₕ_» 1022 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "↑ₕ") (Lean.ParserDescr.cat `term 0))
Instances For
@[simp]
theorem
UpperHalfPlane.ofComplex_apply_eq_ite
(w : ℂ)
:
↑UpperHalfPlane.ofComplex w = if hw : 0 < w.im then ⟨w, hw⟩ else Classical.choice ⋯
theorem
UpperHalfPlane.ofComplex_apply_of_im_pos
{z : ℂ}
(hz : 0 < z.im)
:
↑UpperHalfPlane.ofComplex z = ⟨z, hz⟩
theorem
UpperHalfPlane.ofComplex_apply_eq_of_im_nonpos
{w w' : ℂ}
(hw : w.im ≤ 0)
(hw' : w'.im ≤ 0)
:
theorem
UpperHalfPlane.comp_ofComplex
(f : UpperHalfPlane → ℂ)
(z : UpperHalfPlane)
:
(f ∘ ↑UpperHalfPlane.ofComplex) ↑z = f z
theorem
UpperHalfPlane.comp_ofComplex_of_im_pos
(f : UpperHalfPlane → ℂ)
(z : ℂ)
(hz : 0 < z.im)
:
(f ∘ ↑UpperHalfPlane.ofComplex) z = f ⟨z, hz⟩
theorem
UpperHalfPlane.comp_ofComplex_of_im_le_zero
(f : UpperHalfPlane → ℂ)
(z z' : ℂ)
(hz : z.im ≤ 0)
(hz' : z'.im ≤ 0)
:
(f ∘ ↑UpperHalfPlane.ofComplex) z = (f ∘ ↑UpperHalfPlane.ofComplex) z'