Documentation

Mathlib.NumberTheory.ModularForms.EisensteinSeries.Summable

Summability of Eisenstein series #

We gather results about the summability of Eisenstein series, particularly the summability of the Eisenstein series summands, which are used in the proof of the boundedness of Eisenstein series at infinity.

theorem EisensteinSeries.norm_eq_max_natAbs (x : Fin 2) :
x = (max (x 0).natAbs (x 1).natAbs)

Auxiliary function used for bounding Eisenstein series, defined as z.im ^ 2 / (z.re ^ 2 + z.im ^ 2).

Equations
Instances For
    theorem EisensteinSeries.r1_eq (z : UpperHalfPlane) :
    r1 z = 1 / ((z.re / z.im) ^ 2 + 1)
    theorem EisensteinSeries.r1_aux_bound (z : UpperHalfPlane) (c : ) {d : } (hd : 1 d ^ 2) :
    r1 z (c * z.re + d) ^ 2 + (c * z.im) ^ 2

    For c, d ∈ ℝ with 1 ≤ d ^ 2, we have r1 z ≤ |c * z + d| ^ 2.

    This function is used to give an upper bound on the summands in Eisenstein series; it is defined by z ↦ min z.im √(z.im ^ 2 / (z.re ^ 2 + z.im ^ 2)).

    Equations
    Instances For
      theorem EisensteinSeries.r_lower_bound_on_verticalStrip (z : UpperHalfPlane) {A B : } (h : 0 < B) (hz : z UpperHalfPlane.verticalStrip A B) :
      r { re := A, im := B }, h r z
      theorem EisensteinSeries.auxbound1 (z : UpperHalfPlane) {c : } (d : ) (hc : 1 c ^ 2) :
      r z c * z + d
      theorem EisensteinSeries.auxbound2 (z : UpperHalfPlane) (c : ) {d : } (hd : 1 d ^ 2) :
      r z c * z + d
      theorem EisensteinSeries.div_max_sq_ge_one (x : Fin 2) (hx : x 0) :
      1 ((x 0) / x) ^ 2 1 ((x 1) / x) ^ 2
      theorem EisensteinSeries.r_mul_max_le (z : UpperHalfPlane) {x : Fin 2} (hx : x 0) :
      r z * x (x 0) * z + (x 1)
      theorem EisensteinSeries.summand_bound (z : UpperHalfPlane) {k : } (hk : 0 k) (x : Fin 2) :
      (x 0) * z + (x 1) ^ (-k) r z ^ (-k) * x ^ (-k)

      Upper bound for the summand |c * z + d| ^ (-k), as a product of a function of z and a function of c, d.

      theorem EisensteinSeries.summand_bound_of_mem_verticalStrip {z : UpperHalfPlane} {k : } (hk : 0 k) (x : Fin 2) {A B : } (hB : 0 < B) (hz : z UpperHalfPlane.verticalStrip A B) :
      (x 0) * z + (x 1) ^ (-k) r { re := A, im := B }, hB ^ (-k) * x ^ (-k)
      theorem EisensteinSeries.summable_one_div_norm_rpow {k : } (hk : 2 < k) :
      Summable fun (x : Fin 2) => x ^ (-k)

      The function ℤ ^ 2 → ℝ given by x ↦ ‖x‖ ^ (-k) is summable if 2 < k. We prove this by splitting into boxes using Finset.box.