Number field discriminant #
This file defines the discriminant of a number field.
Main definitions #
NumberField.discr
: the absolute discriminant of a number field.
Tags #
number field, discriminant
@[reducible, inline]
The absolute discriminant of a number field.
Equations
Instances For
theorem
NumberField.discr_eq_discr
(K : Type u_1)
[Field K]
[NumberField K]
{ι : Type u_2}
[Fintype ι]
[DecidableEq ι]
(b : Basis ι ℤ (NumberField.RingOfIntegers K))
:
Algebra.discr ℤ ⇑b = NumberField.discr K
theorem
NumberField.discr_eq_discr_of_algEquiv
(K : Type u_1)
[Field K]
[NumberField K]
{L : Type u_2}
[Field L]
[NumberField L]
(f : K ≃ₐ[ℚ] L)
:
@[simp]
The absolute discriminant of the number field ℚ
is 1.
theorem
Algebra.discr_eq_discr_of_toMatrix_coeff_isIntegral
{ι : Type u_2}
{ι' : Type u_3}
(K : Type u_1)
[Field K]
[DecidableEq ι]
[DecidableEq ι']
[Fintype ι]
[Fintype ι']
[NumberField K]
{b : Basis ι ℚ K}
{b' : Basis ι' ℚ K}
(h : ∀ (i : ι) (j : ι'), IsIntegral ℤ (b.toMatrix (⇑b') i j))
(h' : ∀ (i : ι') (j : ι), IsIntegral ℤ (b'.toMatrix (⇑b) i j))
:
Algebra.discr ℚ ⇑b = Algebra.discr ℚ ⇑b'
If b
and b'
are ℚ
-bases of a number field K
such that
∀ i j, IsIntegral ℤ (b.toMatrix b' i j)
and ∀ i j, IsIntegral ℤ (b'.toMatrix b i j)
then
discr ℚ b = discr ℚ b'
.