Documentation

Mathlib.NumberTheory.NumberField.Norm

Norm in number fields #

Given a finite extension of number fields, we define the norm morphism as a function between the rings of integers.

Main definitions #

Main results #

theorem Algebra.coe_norm_int {K : Type u_1} [Field K] [NumberField K] (x : NumberField.RingOfIntegers K) :
((norm ) x) = (norm ) x

Algebra.norm as a morphism between the rings of integers.

Equations
Instances For
    @[simp]
    theorem RingOfIntegers.coe_norm {L : Type u_1} (K : Type u_2) [Field K] [Field L] [Algebra K L] [FiniteDimensional K L] [Algebra.IsSeparable K L] (x : NumberField.RingOfIntegers L) :
    ((norm K) x) = (Algebra.norm K) x

    If L/K is a finite Galois extension of fields, then, for all (x : 𝓞 L) we have that x ∣ algebraMap (𝓞 K) (𝓞 L) (norm K x).

    theorem RingOfIntegers.norm_norm {L : Type u_1} (K : Type u_2) [Field K] [Field L] [Algebra K L] [FiniteDimensional K L] (F : Type u_3) [Field F] [Algebra K F] [Algebra.IsSeparable K F] [FiniteDimensional K F] [Algebra.IsSeparable K L] [Algebra F L] [Algebra.IsSeparable F L] [FiniteDimensional F L] [IsScalarTower K F L] (x : NumberField.RingOfIntegers L) :
    (norm K) ((norm F) x) = (norm K) x