Documentation

Mathlib.Order.Category.Frm

The category of frames #

This file defines Frm, the category of frames.

References #

structure Frm :
Type (u_1 + 1)

The category of frames.

Instances For
    @[reducible, inline]
    abbrev Frm.of (X : Type u_1) [Order.Frame X] :

    Construct a bundled Frm from the underlying type and typeclass.

    Equations
    Instances For
      structure Frm.Hom (X Y : Frm) :

      The type of morphisms in Frm R.

      Instances For
        theorem Frm.Hom.ext {X Y : Frm} {x y : X.Hom Y} (hom' : x.hom' = y.hom') :
        x = y
        Equations
        • One or more equations did not get rendered due to their size.
        @[reducible, inline]
        abbrev Frm.Hom.hom {X Y : Frm} (f : X.Hom Y) :
        FrameHom X Y

        Turn a morphism in Frm back into a FrameHom.

        Equations
        Instances For
          @[reducible, inline]
          abbrev Frm.ofHom {X Y : Type u} [Order.Frame X] [Order.Frame Y] (f : FrameHom X Y) :
          of X of Y

          Typecheck a FrameHom as a morphism in Frm.

          Equations
          Instances For
            def Frm.Hom.Simps.hom (X Y : Frm) (f : X.Hom Y) :
            FrameHom X Y

            Use the ConcreteCategory.hom projection for @[simps] lemmas.

            Equations
            Instances For

              The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

              theorem Frm.ext {X Y : Frm} {f g : X Y} (w : ∀ (x : X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x) :
              f = g
              theorem Frm.coe_of (X : Type u) [Order.Frame X] :
              (of X) = X
              @[simp]
              theorem Frm.hom_comp {X Y Z : Frm} (f : X Y) (g : Y Z) :
              theorem Frm.hom_ext {X Y : Frm} {f g : X Y} (hf : Hom.hom f = Hom.hom g) :
              f = g
              @[simp]
              theorem Frm.hom_ofHom {X Y : Type u} [Order.Frame X] [Order.Frame Y] (f : FrameHom X Y) :
              @[simp]
              theorem Frm.ofHom_hom {X Y : Frm} (f : X Y) :
              @[simp]
              theorem Frm.ofHom_apply {X Y : Type u} [Order.Frame X] [Order.Frame Y] (f : FrameHom X Y) (x : X) :
              Equations
              • One or more equations did not get rendered due to their size.
              def Frm.Iso.mk {α β : Frm} (e : α ≃o β) :
              α β

              Constructs an isomorphism of frames from an order isomorphism between them.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[simp]
                theorem Frm.Iso.mk_inv {α β : Frm} (e : α ≃o β) :
                (mk e).inv = ofHom { toFun := e.symm, map_inf' := , map_top' := , map_sSup' := }
                @[simp]
                theorem Frm.Iso.mk_hom {α β : Frm} (e : α ≃o β) :
                (mk e).hom = ofHom { toFun := e, map_inf' := , map_top' := , map_sSup' := }