Equations
- Frm.instCoeSortType = { coe := Frm.carrier }
instance
Frm.instConcreteCategoryFrameHomCarrier :
CategoryTheory.ConcreteCategory Frm fun (x1 x2 : Frm) => FrameHom ↑x1 ↑x2
Equations
- One or more equations did not get rendered due to their size.
Use the ConcreteCategory.hom
projection for @[simps]
lemmas.
Equations
- Frm.Hom.Simps.hom X Y f = f.hom
Instances For
The results below duplicate the ConcreteCategory
simp lemmas, but we can keep them for dsimp
.
@[simp]
@[simp]
@[simp]
theorem
Frm.ext
{X Y : Frm}
{f g : X ⟶ Y}
(w : ∀ (x : ↑X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x)
:
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Frm.ofHom_comp
{X Y Z : Type u}
[Order.Frame X]
[Order.Frame Y]
[Order.Frame Z]
(f : FrameHom X Y)
(g : FrameHom Y Z)
:
Equations
- Frm.instInhabited = { default := Frm.of PUnit.{?u.3 + 1} }
Equations
- One or more equations did not get rendered due to their size.
Constructs an isomorphism of frames from an order isomorphism between them.
Equations
- One or more equations did not get rendered due to their size.