Documentation

Mathlib.Order.Category.Lat

The category of lattices #

This defines Lat, the category of lattices.

Note that Lat doesn't correspond to the literature definition of [Lat] (https://ncatlab.org/nlab/show/Lat) as we don't require bottom or top elements. Instead, Lat corresponds to BddLat.

TODO #

The free functor from Lat to BddLat is X → WithTop (WithBot X).

structure Lat :
Type (u_1 + 1)

The category of lattices.

  • carrier : Type u_1

    The underlying lattices.

  • str : Lattice self
Instances For
    @[reducible, inline]
    abbrev Lat.of (X : Type u_1) [Lattice X] :

    Construct a bundled Lat from the underlying type and typeclass.

    Equations
    Instances For
      structure Lat.Hom (X Y : Lat) :

      The type of morphisms in Lat R.

      Instances For
        theorem Lat.Hom.ext {X Y : Lat} {x y : X.Hom Y} (hom' : x.hom' = y.hom') :
        x = y
        Equations
        • One or more equations did not get rendered due to their size.
        @[reducible, inline]
        abbrev Lat.Hom.hom {X Y : Lat} (f : X.Hom Y) :
        LatticeHom X Y

        Turn a morphism in Lat back into a LatticeHom.

        Equations
        Instances For
          @[reducible, inline]
          abbrev Lat.ofHom {X Y : Type u} [Lattice X] [Lattice Y] (f : LatticeHom X Y) :
          of X of Y

          Typecheck a LatticeHom as a morphism in Lat.

          Equations
          Instances For
            def Lat.Hom.Simps.hom (X Y : Lat) (f : X.Hom Y) :
            LatticeHom X Y

            Use the ConcreteCategory.hom projection for @[simps] lemmas.

            Equations
            Instances For

              The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

              theorem Lat.ext {X Y : Lat} {f g : X Y} (w : ∀ (x : X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x) :
              f = g
              theorem Lat.coe_of (X : Type u) [Lattice X] :
              (of X) = X
              @[simp]
              theorem Lat.hom_comp {X Y Z : Lat} (f : X Y) (g : Y Z) :
              theorem Lat.hom_ext {X Y : Lat} {f g : X Y} (hf : Hom.hom f = Hom.hom g) :
              f = g
              @[simp]
              theorem Lat.hom_ofHom {X Y : Type u} [Lattice X] [Lattice Y] (f : LatticeHom X Y) :
              @[simp]
              theorem Lat.ofHom_hom {X Y : Lat} (f : X Y) :
              @[simp]
              theorem Lat.ofHom_comp {X Y Z : Type u} [Lattice X] [Lattice Y] [Lattice Z] (f : LatticeHom X Y) (g : LatticeHom Y Z) :
              theorem Lat.ofHom_apply {X Y : Type u} [Lattice X] [Lattice Y] (f : LatticeHom X Y) (x : X) :
              Equations
              • One or more equations did not get rendered due to their size.
              def Lat.Iso.mk {α β : Lat} (e : α ≃o β) :
              α β

              Constructs an isomorphism of lattices from an order isomorphism between them.

              Equations
              • Lat.Iso.mk e = { hom := Lat.ofHom { toFun := e, map_sup' := , map_inf' := }, inv := Lat.ofHom { toFun := e.symm, map_sup' := , map_inf' := }, hom_inv_id := , inv_hom_id := }
              Instances For
                @[simp]
                theorem Lat.Iso.mk_hom {α β : Lat} (e : α ≃o β) :
                (mk e).hom = ofHom { toFun := e, map_sup' := , map_inf' := }
                @[simp]
                theorem Lat.Iso.mk_inv {α β : Lat} (e : α ≃o β) :
                (mk e).inv = ofHom { toFun := e.symm, map_sup' := , map_inf' := }

                OrderDual as a functor.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem Lat.dual_map {X✝ Y✝ : Lat} (f : X✝ Y✝) :

                  The equivalence between Lat and itself induced by OrderDual both ways.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For