Documentation

Mathlib.Order.Category.Frm

The category of frames #

This file defines Frm, the category of frames.

References #

structure Frm :
Type (u_1 + 1)

The category of frames.

Instances For
    structure Frm.Hom (X Y : Frm) :

    The type of morphisms in Frm R.

    Instances For
      theorem Frm.Hom.ext {X Y : Frm} {x y : X.Hom Y} (hom' : x.hom' = y.hom') :
      x = y
      theorem Frm.Hom.ext_iff {X Y : Frm} {x y : X.Hom Y} :
      x = y x.hom' = y.hom'
      Equations
      • One or more equations did not get rendered due to their size.
      Equations
      • One or more equations did not get rendered due to their size.
      @[reducible, inline]
      abbrev Frm.Hom.hom {X Y : Frm} (f : X.Hom Y) :
      FrameHom X Y

      Turn a morphism in Frm back into a FrameHom.

      Equations
      Instances For
        @[reducible, inline]
        abbrev Frm.ofHom {X Y : Type u} [Order.Frame X] [Order.Frame Y] (f : FrameHom X Y) :
        { carrier := X, str := inst✝ } { carrier := Y, str := inst✝¹ }

        Typecheck a FrameHom as a morphism in Frm.

        Equations
        Instances For
          def Frm.Hom.Simps.hom (X Y : Frm) (f : X.Hom Y) :
          FrameHom X Y

          Use the ConcreteCategory.hom projection for @[simps] lemmas.

          Equations
          Instances For

            The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

            theorem Frm.ext {X Y : Frm} {f g : X Y} (w : ∀ (x : X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x) :
            f = g
            theorem Frm.ext_iff {X Y : Frm} {f g : X Y} :
            theorem Frm.coe_of (X : Type u) [Order.Frame X] :
            { carrier := X, str := inst✝ } = X
            @[simp]
            theorem Frm.hom_comp {X Y Z : Frm} (f : X Y) (g : Y Z) :
            theorem Frm.hom_ext {X Y : Frm} {f g : X Y} (hf : Hom.hom f = Hom.hom g) :
            f = g
            theorem Frm.hom_ext_iff {X Y : Frm} {f g : X Y} :
            @[simp]
            theorem Frm.hom_ofHom {X Y : Type u} [Order.Frame X] [Order.Frame Y] (f : FrameHom X Y) :
            @[simp]
            theorem Frm.ofHom_hom {X Y : Frm} (f : X Y) :
            @[simp]
            theorem Frm.ofHom_id {X : Type u} [Order.Frame X] :
            ofHom (FrameHom.id X) = CategoryTheory.CategoryStruct.id { carrier := X, str := inst✝ }
            @[simp]
            theorem Frm.ofHom_apply {X Y : Type u} [Order.Frame X] [Order.Frame Y] (f : FrameHom X Y) (x : X) :
            Equations
            • One or more equations did not get rendered due to their size.
            def Frm.Iso.mk {α β : Frm} (e : α ≃o β) :
            α β

            Constructs an isomorphism of frames from an order isomorphism between them.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem Frm.Iso.mk_inv {α β : Frm} (e : α ≃o β) :
              (mk e).inv = ofHom { toFun := e.symm, map_inf' := , map_top' := , map_sSup' := }
              @[simp]
              theorem Frm.Iso.mk_hom {α β : Frm} (e : α ≃o β) :
              (mk e).hom = ofHom { toFun := e, map_inf' := , map_top' := , map_sSup' := }