Theory of complete lattices #
This file contains results on complete lattices that need more theory to develop.
Naming conventions #
In lemma names,
sSupis calledsSupsInfis calledsInf⨆ i, s iis callediSup⨅ i, s iis callediInf⨆ i j, s i jis callediSup₂. This is aniSupinside aniSup.⨅ i j, s i jis callediInf₂. This is aniInfinside aniInf.⨆ i ∈ s, t iis calledbiSupfor "boundediSup". This is the special case ofiSup₂wherej : i ∈ s.⨅ i ∈ s, t iis calledbiInffor "boundediInf". This is the special case ofiInf₂wherej : i ∈ s.
Notation #
Instances #
This is a weaker version of sup_sInf_eq
This is a weaker version of inf_sSup_eq
This is a weaker version of sInf_sup_eq
This is a weaker version of sSup_inf_eq
theorem
iInf_sup_le_iInf_sup
{α : Type u_1}
{ι : Sort u_4}
[CompleteLattice α]
(f : ι → α)
(a : α)
:
theorem
sup_iInf_le_iInf_sup
{α : Type u_1}
{ι : Sort u_4}
[CompleteLattice α]
(f : ι → α)
(a : α)
:
theorem
iSup_inf_le_iSup_inf
{α : Type u_1}
{ι : Sort u_4}
[CompleteLattice α]
(f : ι → α)
(a : α)
:
theorem
iSup_inf_le_inf_iSup
{α : Type u_1}
{ι : Sort u_4}
[CompleteLattice α]
(f : ι → α)
(a : α)
:
theorem
biInf_sup_le_biInf_sup
{α : Type u_1}
{β : Type u_2}
[CompleteLattice α]
(f : β → α)
(s : Set β)
(a : α)
:
theorem
sup_biInf_le_biInf_sup
{α : Type u_1}
{β : Type u_2}
[CompleteLattice α]
(f : β → α)
(s : Set β)
(a : α)
:
theorem
biSup_inf_le_biSup_inf
{α : Type u_1}
{β : Type u_2}
[CompleteLattice α]
(f : β → α)
(s : Set β)
(a : α)
:
theorem
biSup_inf_le_inf_biSup
{α : Type u_1}
{β : Type u_2}
[CompleteLattice α]
(f : β → α)
(s : Set β)
(a : α)
:
theorem
disjoint_sSup_left
{α : Type u_1}
[CompleteLattice α]
{a : Set α}
{b : α}
(d : Disjoint (sSup a) b)
{i : α}
(hi : i ∈ a)
:
Disjoint i b
theorem
disjoint_sSup_right
{α : Type u_1}
[CompleteLattice α]
{a : Set α}
{b : α}
(d : Disjoint b (sSup a))
{i : α}
(hi : i ∈ a)
:
Disjoint b i
Equations
- ULift.instCompleteLattice = Function.Injective.completeLattice ULift.down ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
Equations
- One or more equations did not get rendered due to their size.