Documentation

Mathlib.Order.Copy

Tooling to make copies of lattice structures #

Sometimes it is useful to make a copy of a lattice structure where one replaces the data parts with provably equal definitions that have better definitional properties.

def OrderTop.copy {α : Type u} {h h' : LE α} (c : OrderTop α) (top : α) (eq_top : top = ) (le_eq : ∀ (x y : α), x y x y) :

A function to create a provable equal copy of a top order with possibly different definitional equalities.

Equations
Instances For
    def OrderBot.copy {α : Type u} {h h' : LE α} (c : OrderBot α) (bot : α) (eq_bot : bot = ) (le_eq : ∀ (x y : α), x y x y) :

    A function to create a provable equal copy of a bottom order with possibly different definitional equalities.

    Equations
    Instances For
      def BoundedOrder.copy {α : Type u} {h h' : LE α} (c : BoundedOrder α) (top : α) (eq_top : top = ) (bot : α) (eq_bot : bot = ) (le_eq : ∀ (x y : α), x y x y) :

      A function to create a provable equal copy of a bounded order with possibly different definitional equalities.

      Equations
      • c.copy top eq_top bot eq_bot le_eq = BoundedOrder.mk
      Instances For
        def Lattice.copy {α : Type u} (c : Lattice α) (le : ααProp) (eq_le : le = LE.le) (sup : ααα) (eq_sup : sup = max) (inf : ααα) (eq_inf : inf = min) :

        A function to create a provable equal copy of a lattice with possibly different definitional equalities.

        Equations
        • c.copy le eq_le sup eq_sup inf eq_inf = Lattice.mk inf
        Instances For
          def DistribLattice.copy {α : Type u} (c : DistribLattice α) (le : ααProp) (eq_le : le = LE.le) (sup : ααα) (eq_sup : sup = max) (inf : ααα) (eq_inf : inf = min) :

          A function to create a provable equal copy of a distributive lattice with possibly different definitional equalities.

          Equations
          Instances For
            def GeneralizedHeytingAlgebra.copy {α : Type u} (c : GeneralizedHeytingAlgebra α) (le : ααProp) (eq_le : le = LE.le) (top : α) (eq_top : top = ) (sup : ααα) (eq_sup : sup = max) (inf : ααα) (eq_inf : inf = min) (himp : ααα) (eq_himp : himp = HImp.himp) :

            A function to create a provable equal copy of a generalised heyting algebra with possibly different definitional equalities.

            Equations
            Instances For
              def GeneralizedCoheytingAlgebra.copy {α : Type u} (c : GeneralizedCoheytingAlgebra α) (le : ααProp) (eq_le : le = LE.le) (bot : α) (eq_bot : bot = ) (sup : ααα) (eq_sup : sup = max) (inf : ααα) (eq_inf : inf = min) (sdiff : ααα) (eq_sdiff : sdiff = SDiff.sdiff) :

              A function to create a provable equal copy of a generalised coheyting algebra with possibly different definitional equalities.

              Equations
              Instances For
                def HeytingAlgebra.copy {α : Type u} (c : HeytingAlgebra α) (le : ααProp) (eq_le : le = LE.le) (top : α) (eq_top : top = ) (bot : α) (eq_bot : bot = ) (sup : ααα) (eq_sup : sup = max) (inf : ααα) (eq_inf : inf = min) (himp : ααα) (eq_himp : himp = HImp.himp) (compl : αα) (eq_compl : compl = HasCompl.compl) :

                A function to create a provable equal copy of a heyting algebra with possibly different definitional equalities.

                Equations
                • c.copy le eq_le top eq_top bot eq_bot sup eq_sup inf eq_inf himp eq_himp compl eq_compl = HeytingAlgebra.mk
                Instances For
                  def CoheytingAlgebra.copy {α : Type u} (c : CoheytingAlgebra α) (le : ααProp) (eq_le : le = LE.le) (top : α) (eq_top : top = ) (bot : α) (eq_bot : bot = ) (sup : ααα) (eq_sup : sup = max) (inf : ααα) (eq_inf : inf = min) (sdiff : ααα) (eq_sdiff : sdiff = SDiff.sdiff) (hnot : αα) (eq_hnot : hnot = HNot.hnot) :

                  A function to create a provable equal copy of a coheyting algebra with possibly different definitional equalities.

                  Equations
                  • c.copy le eq_le top eq_top bot eq_bot sup eq_sup inf eq_inf sdiff eq_sdiff hnot eq_hnot = CoheytingAlgebra.mk
                  Instances For
                    def BiheytingAlgebra.copy {α : Type u} (c : BiheytingAlgebra α) (le : ααProp) (eq_le : le = LE.le) (top : α) (eq_top : top = ) (bot : α) (eq_bot : bot = ) (sup : ααα) (eq_sup : sup = max) (inf : ααα) (eq_inf : inf = min) (sdiff : ααα) (eq_sdiff : sdiff = SDiff.sdiff) (hnot : αα) (eq_hnot : hnot = HNot.hnot) (himp : ααα) (eq_himp : himp = HImp.himp) (compl : αα) (eq_compl : compl = HasCompl.compl) :

                    A function to create a provable equal copy of a biheyting algebra with possibly different definitional equalities.

                    Equations
                    • c.copy le eq_le top eq_top bot eq_bot sup eq_sup inf eq_inf sdiff eq_sdiff hnot eq_hnot himp eq_himp compl eq_compl = BiheytingAlgebra.mk
                    Instances For
                      def CompleteLattice.copy {α : Type u} (c : CompleteLattice α) (le : ααProp) (eq_le : le = LE.le) (top : α) (eq_top : top = ) (bot : α) (eq_bot : bot = ) (sup : ααα) (eq_sup : sup = max) (inf : ααα) (eq_inf : inf = min) (sSup : Set αα) (eq_sSup : sSup = SupSet.sSup) (sInf : Set αα) (eq_sInf : sInf = InfSet.sInf) :

                      A function to create a provable equal copy of a complete lattice with possibly different definitional equalities.

                      Equations
                      • c.copy le eq_le top eq_top bot eq_bot sup eq_sup inf eq_inf sSup eq_sSup sInf eq_sInf = CompleteLattice.mk
                      Instances For
                        def Frame.copy {α : Type u} (c : Order.Frame α) (le : ααProp) (eq_le : le = LE.le) (top : α) (eq_top : top = ) (bot : α) (eq_bot : bot = ) (sup : ααα) (eq_sup : sup = max) (inf : ααα) (eq_inf : inf = min) (himp : ααα) (eq_himp : himp = HImp.himp) (compl : αα) (eq_compl : compl = HasCompl.compl) (sSup : Set αα) (eq_sSup : sSup = SupSet.sSup) (sInf : Set αα) (eq_sInf : sInf = InfSet.sInf) :

                        A function to create a provable equal copy of a frame with possibly different definitional equalities.

                        Equations
                        • Frame.copy c le eq_le top eq_top bot eq_bot sup eq_sup inf eq_inf himp eq_himp compl eq_compl sSup eq_sSup sInf eq_sInf = Order.Frame.mk
                        Instances For
                          def Coframe.copy {α : Type u} (c : Order.Coframe α) (le : ααProp) (eq_le : le = LE.le) (top : α) (eq_top : top = ) (bot : α) (eq_bot : bot = ) (sup : ααα) (eq_sup : sup = max) (inf : ααα) (eq_inf : inf = min) (sdiff : ααα) (eq_sdiff : sdiff = SDiff.sdiff) (hnot : αα) (eq_hnot : hnot = HNot.hnot) (sSup : Set αα) (eq_sSup : sSup = SupSet.sSup) (sInf : Set αα) (eq_sInf : sInf = InfSet.sInf) :

                          A function to create a provable equal copy of a coframe with possibly different definitional equalities.

                          Equations
                          • Coframe.copy c le eq_le top eq_top bot eq_bot sup eq_sup inf eq_inf sdiff eq_sdiff hnot eq_hnot sSup eq_sSup sInf eq_sInf = Order.Coframe.mk
                          Instances For
                            def CompleteDistribLattice.copy {α : Type u} (c : CompleteDistribLattice α) (le : ααProp) (eq_le : le = LE.le) (top : α) (eq_top : top = ) (bot : α) (eq_bot : bot = ) (sup : ααα) (eq_sup : sup = max) (inf : ααα) (eq_inf : inf = min) (sdiff : ααα) (eq_sdiff : sdiff = SDiff.sdiff) (hnot : αα) (eq_hnot : hnot = HNot.hnot) (himp : ααα) (eq_himp : himp = HImp.himp) (compl : αα) (eq_compl : compl = HasCompl.compl) (sSup : Set αα) (eq_sSup : sSup = SupSet.sSup) (sInf : Set αα) (eq_sInf : sInf = InfSet.sInf) :

                            A function to create a provable equal copy of a complete distributive lattice with possibly different definitional equalities.

                            Equations
                            • c.copy le eq_le top eq_top bot eq_bot sup eq_sup inf eq_inf sdiff eq_sdiff hnot eq_hnot himp eq_himp compl eq_compl sSup eq_sSup sInf eq_sInf = CompleteDistribLattice.mk
                            Instances For
                              def ConditionallyCompleteLattice.copy {α : Type u} (c : ConditionallyCompleteLattice α) (le : ααProp) (eq_le : le = LE.le) (sup : ααα) (eq_sup : sup = max) (inf : ααα) (eq_inf : inf = min) (sSup : Set αα) (eq_sSup : sSup = SupSet.sSup) (sInf : Set αα) (eq_sInf : sInf = InfSet.sInf) :

                              A function to create a provable equal copy of a conditionally complete lattice with possibly different definitional equalities.

                              Equations
                              Instances For