Documentation

Mathlib.Order.Filter.Cocardinal

The cocardinal filter #

In this file we define Filter.cocardinal hc: the filter of sets with cardinality less than a regular cardinal c that satisfies Cardinal.aleph0 < c. Such filters are CardinalInterFilter with cardinality c.

def Filter.cocardinal (α : Type u) {c : Cardinal.{u}} (hreg : c.IsRegular) :

The filter defined by all sets that have a complement with at most cardinality c. For a union of c sets of c elements to have c elements, we need that c is a regular cardinal.

Equations
Instances For
    @[simp]
    theorem Filter.mem_cocardinal {α : Type u} {c : Cardinal.{u}} {hreg : c.IsRegular} {s : Set α} :
    instance Filter.instCardinalInterFilter_cocardinal {α : Type u} {c : Cardinal.{u}} {hreg : c.IsRegular} :
    Equations
    • =
    @[simp]
    theorem Filter.eventually_cocardinal {α : Type u} {c : Cardinal.{u}} {hreg : c.IsRegular} {p : αProp} :
    (∀ᶠ (x : α) in Filter.cocardinal α hreg, p x) Cardinal.mk {x : α | ¬p x} < c
    theorem Filter.hasBasis_cocardinal {α : Type u} {c : Cardinal.{u}} {hreg : c.IsRegular} :
    (Filter.cocardinal α hreg).HasBasis {s : Set α | Cardinal.mk s < c} compl
    theorem Filter.frequently_cocardinal {α : Type u} {c : Cardinal.{u}} {hreg : c.IsRegular} {p : αProp} :
    (∃ᶠ (x : α) in Filter.cocardinal α hreg, p x) c Cardinal.mk {x : α | p x}
    theorem Filter.frequently_cocardinal_mem {α : Type u} {c : Cardinal.{u}} {hreg : c.IsRegular} {s : Set α} :
    (∃ᶠ (x : α) in Filter.cocardinal α hreg, x s) c Cardinal.mk s
    @[simp]
    theorem Filter.cocardinal_inf_principal_neBot_iff {α : Type u} {c : Cardinal.{u}} {hreg : c.IsRegular} {s : Set α} :
    theorem Filter.compl_mem_cocardinal_of_card_lt {α : Type u} {c : Cardinal.{u}} {hreg : c.IsRegular} {s : Set α} (hs : Cardinal.mk s < c) :
    theorem Set.Finite.compl_mem_cocardinal {α : Type u} {c : Cardinal.{u}} {hreg : c.IsRegular} {s : Set α} (hs : s.Finite) :
    theorem Filter.eventually_cocardinal_nmem_of_card_lt {α : Type u} {c : Cardinal.{u}} {hreg : c.IsRegular} {s : Set α} (hs : Cardinal.mk s < c) :
    ∀ᶠ (x : α) in Filter.cocardinal α hreg, xs
    theorem Finset.eventually_cocardinal_nmem {α : Type u} {c : Cardinal.{u}} {hreg : c.IsRegular} (s : Finset α) :
    ∀ᶠ (x : α) in Filter.cocardinal α hreg, xs
    theorem Filter.eventually_cocardinal_ne {α : Type u} {c : Cardinal.{u}} {hreg : c.IsRegular} (x : α) :
    ∀ᶠ (a : α) in Filter.cocardinal α hreg, a x
    @[reducible, inline]
    abbrev Filter.cocountable {α : Type u} :

    The filter defined by all sets that have countable complements.

    Equations
    Instances For
      theorem Filter.mem_cocountable {α : Type u} {s : Set α} :
      s Filter.cocountable s.Countable