The cocardinal filter #
In this file we define Filter.cocardinal hc
: the filter of sets with cardinality less than
a regular cardinal c
that satisfies Cardinal.aleph0 < c
.
Such filters are CardinalInterFilter
with cardinality c
.
The filter defined by all sets that have a complement with at most cardinality c
. For a union
of c
sets of c
elements to have c
elements, we need that c
is a regular cardinal.
Equations
- Filter.cocardinal α hreg = Filter.ofCardinalUnion {s : Set α | Cardinal.mk ↑s < c} ⋯ ⋯ ⋯
Instances For
@[simp]
theorem
Filter.mem_cocardinal
{α : Type u}
{c : Cardinal.{u}}
{hreg : c.IsRegular}
{s : Set α}
:
s ∈ Filter.cocardinal α hreg ↔ Cardinal.mk ↑sᶜ < c
@[simp]
theorem
Filter.cocardinal_aleph0_eq_cofinite
{α : Type u}
:
Filter.cocardinal α Cardinal.isRegular_aleph0 = Filter.cofinite
instance
Filter.instCardinalInterFilter_cocardinal
{α : Type u}
{c : Cardinal.{u}}
{hreg : c.IsRegular}
:
CardinalInterFilter (Filter.cocardinal α hreg) c
@[simp]
theorem
Filter.eventually_cocardinal
{α : Type u}
{c : Cardinal.{u}}
{hreg : c.IsRegular}
{p : α → Prop}
:
(∀ᶠ (x : α) in Filter.cocardinal α hreg, p x) ↔ Cardinal.mk ↑{x : α | ¬p x} < c
theorem
Filter.hasBasis_cocardinal
{α : Type u}
{c : Cardinal.{u}}
{hreg : c.IsRegular}
:
(Filter.cocardinal α hreg).HasBasis {s : Set α | Cardinal.mk ↑s < c} compl
theorem
Filter.frequently_cocardinal
{α : Type u}
{c : Cardinal.{u}}
{hreg : c.IsRegular}
{p : α → Prop}
:
(∃ᶠ (x : α) in Filter.cocardinal α hreg, p x) ↔ c ≤ Cardinal.mk ↑{x : α | p x}
theorem
Filter.frequently_cocardinal_mem
{α : Type u}
{c : Cardinal.{u}}
{hreg : c.IsRegular}
{s : Set α}
:
(∃ᶠ (x : α) in Filter.cocardinal α hreg, x ∈ s) ↔ c ≤ Cardinal.mk ↑s
@[simp]
theorem
Filter.cocardinal_inf_principal_neBot_iff
{α : Type u}
{c : Cardinal.{u}}
{hreg : c.IsRegular}
{s : Set α}
:
(Filter.cocardinal α hreg ⊓ Filter.principal s).NeBot ↔ c ≤ Cardinal.mk ↑s
theorem
Filter.compl_mem_cocardinal_of_card_lt
{α : Type u}
{c : Cardinal.{u}}
{hreg : c.IsRegular}
{s : Set α}
(hs : Cardinal.mk ↑s < c)
:
sᶜ ∈ Filter.cocardinal α hreg
theorem
Set.Finite.compl_mem_cocardinal
{α : Type u}
{c : Cardinal.{u}}
{hreg : c.IsRegular}
{s : Set α}
(hs : s.Finite)
:
sᶜ ∈ Filter.cocardinal α hreg
theorem
Filter.eventually_cocardinal_nmem_of_card_lt
{α : Type u}
{c : Cardinal.{u}}
{hreg : c.IsRegular}
{s : Set α}
(hs : Cardinal.mk ↑s < c)
:
∀ᶠ (x : α) in Filter.cocardinal α hreg, x ∉ s
theorem
Finset.eventually_cocardinal_nmem
{α : Type u}
{c : Cardinal.{u}}
{hreg : c.IsRegular}
(s : Finset α)
:
∀ᶠ (x : α) in Filter.cocardinal α hreg, x ∉ s
theorem
Filter.eventually_cocardinal_ne
{α : Type u}
{c : Cardinal.{u}}
{hreg : c.IsRegular}
(x : α)
:
∀ᶠ (a : α) in Filter.cocardinal α hreg, a ≠ x
@[reducible, inline]
The filter defined by all sets that have countable complements.
Equations
- Filter.cocountable = Filter.cocardinal α Cardinal.isRegular_aleph_one