Lemmas about filters and ordered rings. #
theorem
Filter.EventuallyLE.mul_le_mul
{α : Type u}
{β : Type v}
[MulZeroClass β]
[PartialOrder β]
[PosMulMono β]
[MulPosMono β]
{l : Filter α}
{f₁ f₂ g₁ g₂ : α → β}
(hf : f₁ ≤ᶠ[l] f₂)
(hg : g₁ ≤ᶠ[l] g₂)
(hg₀ : 0 ≤ᶠ[l] g₁)
(hf₀ : 0 ≤ᶠ[l] f₂)
:
instance
Filter.Germ.instOrderedCommGroup
{α : Type u}
{β : Type v}
{l : Filter α}
[OrderedCommGroup β]
:
OrderedCommGroup (l.Germ β)
Equations
- Filter.Germ.instOrderedCommGroup = OrderedCommGroup.mk ⋯
instance
Filter.Germ.instOrderedAddCommGroup
{α : Type u}
{β : Type v}
{l : Filter α}
[OrderedAddCommGroup β]
:
OrderedAddCommGroup (l.Germ β)
Equations
- Filter.Germ.instOrderedAddCommGroup = OrderedAddCommGroup.mk ⋯
instance
Filter.Germ.instOrderedSemiring
{α : Type u}
{β : Type v}
{l : Filter α}
[OrderedSemiring β]
:
OrderedSemiring (l.Germ β)
Equations
- Filter.Germ.instOrderedSemiring = OrderedSemiring.mk ⋯ ⋯ ⋯ ⋯
instance
Filter.Germ.instOrderedCommSemiring
{α : Type u}
{β : Type v}
{l : Filter α}
[OrderedCommSemiring β]
:
OrderedCommSemiring (l.Germ β)
Equations
- Filter.Germ.instOrderedCommSemiring = OrderedCommSemiring.mk ⋯
instance
Filter.Germ.instOrderedRing
{α : Type u}
{β : Type v}
{l : Filter α}
[OrderedRing β]
:
OrderedRing (l.Germ β)
Equations
- Filter.Germ.instOrderedRing = OrderedRing.mk ⋯ ⋯ ⋯
instance
Filter.Germ.instOrderedCommRing
{α : Type u}
{β : Type v}
{l : Filter α}
[OrderedCommRing β]
:
OrderedCommRing (l.Germ β)
Equations
- Filter.Germ.instOrderedCommRing = OrderedCommRing.mk ⋯