Documentation

Mathlib.Order.Filter.Subsingleton

Subsingleton filters #

We say that a filter l is a subsingleton if there exists a subsingleton set s ∈ l. Equivalently, l is either or pure a for some a.

def Filter.Subsingleton {α : Type u_1} (l : Filter α) :

We say that a filter is a subsingleton if there exists a subsingleton set that belongs to the filter.

Equations
  • l.Subsingleton = sl, s.Subsingleton
Instances For
    theorem Filter.HasBasis.subsingleton_iff {α : Type u_1} {l : Filter α} {ι : Sort u_3} {p : ιProp} {s : ιSet α} (h : l.HasBasis p s) :
    l.Subsingleton ∃ (i : ι), p i (s i).Subsingleton
    theorem Filter.Subsingleton.anti {α : Type u_1} {l l' : Filter α} (hl : l.Subsingleton) (hl' : l' l) :
    l'.Subsingleton
    theorem Filter.Subsingleton.of_subsingleton {α : Type u_1} {l : Filter α} [Subsingleton α] :
    l.Subsingleton
    theorem Filter.Subsingleton.map {α : Type u_1} {β : Type u_2} {l : Filter α} (hl : l.Subsingleton) (f : αβ) :
    (Filter.map f l).Subsingleton
    theorem Filter.Subsingleton.prod {α : Type u_1} {β : Type u_2} {l : Filter α} (hl : l.Subsingleton) {l' : Filter β} (hl' : l'.Subsingleton) :
    (l ×ˢ l').Subsingleton
    @[simp]
    theorem Filter.subsingleton_pure {α : Type u_1} {a : α} :
    (pure a).Subsingleton
    @[simp]
    theorem Filter.subsingleton_bot {α : Type u_1} :
    .Subsingleton
    theorem Filter.Subsingleton.exists_eq_pure {α : Type u_1} {l : Filter α} [l.NeBot] (hl : l.Subsingleton) :
    ∃ (a : α), l = pure a

    A nontrivial subsingleton filter is equal to pure a for some a.

    theorem Filter.subsingleton_iff_bot_or_pure {α : Type u_1} {l : Filter α} :
    l.Subsingleton l = ∃ (a : α), l = pure a

    A filter is a subsingleton iff it is equal to or to pure a for some a.

    theorem Filter.subsingleton_iff_exists_le_pure {α : Type u_1} {l : Filter α} [Nonempty α] :
    l.Subsingleton ∃ (a : α), l pure a

    In a nonempty type, a filter is a subsingleton iff it is less than or equal to a pure filter.

    theorem Filter.subsingleton_iff_exists_singleton_mem {α : Type u_1} {l : Filter α} [Nonempty α] :
    l.Subsingleton ∃ (a : α), {a} l
    theorem Filter.Subsingleton.exists_le_pure {α : Type u_1} {l : Filter α} [Nonempty α] :
    l.Subsingleton∃ (a : α), l pure a

    A subsingleton filter on a nonempty type is less than or equal to pure a for some a.

    theorem Filter.Subsingleton.isCountablyGenerated {α : Type u_1} {l : Filter α} (hl : l.Subsingleton) :
    l.IsCountablyGenerated