Subsingleton filters #
We say that a filter l
is a subsingleton if there exists a subsingleton set s ∈ l
.
Equivalently, l
is either ⊥
or pure a
for some a
.
theorem
Filter.Subsingleton.anti
{α : Type u_1}
{l l' : Filter α}
(hl : l.Subsingleton)
(hl' : l' ≤ l)
:
l'.Subsingleton
theorem
Filter.Subsingleton.of_subsingleton
{α : Type u_1}
{l : Filter α}
[Subsingleton α]
:
l.Subsingleton
theorem
Filter.Subsingleton.map
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
(hl : l.Subsingleton)
(f : α → β)
:
(Filter.map f l).Subsingleton
theorem
Filter.Subsingleton.isCountablyGenerated
{α : Type u_1}
{l : Filter α}
(hl : l.Subsingleton)
:
l.IsCountablyGenerated