Documentation

Mathlib.Order.Filter.CountablyGenerated

Countably generated filters #

In this file we define a typeclass Filter.IsCountablyGenerated saying that a filter is generated by a countable family of sets.

We also define predicates Filter.IsCountableBasis and Filter.HasCountableBasis saying that a specific family of sets is a countable basis.

class Filter.IsCountablyGenerated {α : Type u_1} (f : Filter α) :

IsCountablyGenerated f means f = generate s for some countable s.

  • out : ∃ (s : Set (Set α)), s.Countable f = generate s

    There exists a countable set that generates the filter.

Instances
    structure Filter.IsCountableBasis {α : Type u_1} {ι : Type u_4} (p : ιProp) (s : ιSet α) extends Filter.IsBasis p s :

    IsCountableBasis p s means the image of s bounded by p is a countable filter basis.

    • nonempty : ∃ (i : ι), p i
    • inter {i j : ι} : p ip j∃ (k : ι), p k s k s i s j
    • countable : (setOf p).Countable

      The set of i that satisfy the predicate p is countable.

    Instances For
      structure Filter.HasCountableBasis {α : Type u_1} {ι : Type u_4} (l : Filter α) (p : ιProp) (s : ιSet α) extends l.HasBasis p s :

      We say that a filter l has a countable basis s : ι → Set α bounded by p : ι → Prop, if t ∈ l if and only if t includes s i for some i such that p i, and the set defined by p is countable.

      • mem_iff' (t : Set α) : t l ∃ (i : ι), p i s i t
      • countable : (setOf p).Countable

        The set of i that satisfy the predicate p is countable.

      Instances For
        structure Filter.CountableFilterBasis (α : Type u_6) extends FilterBasis α :
        Type u_6

        A countable filter basis B on a type α is a nonempty countable collection of sets of α such that the intersection of two elements of this collection contains some element of the collection.

        • sets : Set (Set α)
        • nonempty : self.sets.Nonempty
        • inter_sets {x y : Set α} : x self.setsy self.setszself.sets, z x y
        • countable : self.sets.Countable

          The set of sets of the filter basis is countable.

        Instances For
          theorem Filter.HasCountableBasis.isCountablyGenerated {α : Type u_1} {ι : Type u_4} {f : Filter α} {p : ιProp} {s : ιSet α} (h : f.HasCountableBasis p s) :
          f.IsCountablyGenerated
          theorem Filter.HasBasis.isCountablyGenerated {α : Type u_1} {ι : Type u_4} [Countable ι] {f : Filter α} {p : ιProp} {s : ιSet α} (h : f.HasBasis p s) :
          f.IsCountablyGenerated
          theorem Filter.antitone_seq_of_seq {α : Type u_1} (s : Set α) :
          ∃ (t : Set α), Antitone t ⨅ (i : ), principal (s i) = ⨅ (i : ), principal (t i)
          theorem Filter.countable_biInf_eq_iInf_seq {α : Type u_1} {ι : Type u_4} [CompleteLattice α] {B : Set ι} (Bcbl : B.Countable) (Bne : B.Nonempty) (f : ια) :
          ∃ (x : ι), tB, f t = ⨅ (i : ), f (x i)
          theorem Filter.countable_biInf_eq_iInf_seq' {α : Type u_1} {ι : Type u_4} [CompleteLattice α] {B : Set ι} (Bcbl : B.Countable) (f : ια) {i₀ : ι} (h : f i₀ = ) :
          ∃ (x : ι), tB, f t = ⨅ (i : ), f (x i)
          theorem Filter.countable_biInf_principal_eq_seq_iInf {α : Type u_1} {B : Set (Set α)} (Bcbl : B.Countable) :
          ∃ (x : Set α), tB, principal t = ⨅ (i : ), principal (x i)
          theorem Filter.HasAntitoneBasis.mem_iff {α : Type u_1} {ι : Type u_4} [Preorder ι] {l : Filter α} {s : ιSet α} (hs : l.HasAntitoneBasis s) {t : Set α} :
          t l ∃ (i : ι), s i t
          theorem Filter.HasAntitoneBasis.mem {α : Type u_1} {ι : Type u_4} [Preorder ι] {l : Filter α} {s : ιSet α} (hs : l.HasAntitoneBasis s) (i : ι) :
          s i l
          theorem Filter.HasAntitoneBasis.hasBasis_ge {α : Type u_1} {ι : Type u_4} [Preorder ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] {l : Filter α} {s : ιSet α} (hs : l.HasAntitoneBasis s) (i : ι) :
          l.HasBasis (fun (j : ι) => i j) s
          theorem Filter.HasBasis.exists_antitone_subbasis {α : Type u_1} {ι' : Sort u_5} {f : Filter α} [h : f.IsCountablyGenerated] {p : ι'Prop} {s : ι'Set α} (hs : f.HasBasis p s) :
          ∃ (x : ι'), (∀ (i : ), p (x i)) f.HasAntitoneBasis fun (i : ) => s (x i)

          If f is countably generated and f.HasBasis p s, then f admits a decreasing basis enumerated by natural numbers such that all sets have the form s i. More precisely, there is a sequence i n such that p (i n) for all n and s (i n) is a decreasing sequence of sets which forms a basis of f

          theorem Filter.exists_antitone_basis {α : Type u_1} (f : Filter α) [f.IsCountablyGenerated] :
          ∃ (x : Set α), f.HasAntitoneBasis x

          A countably generated filter admits a basis formed by an antitone sequence of sets.

          theorem Filter.exists_antitone_seq {α : Type u_1} (f : Filter α) [f.IsCountablyGenerated] :
          ∃ (x : Set α), Antitone x ∀ {s : Set α}, s f ∃ (i : ), x i s
          instance Filter.Inf.isCountablyGenerated {α : Type u_1} (f g : Filter α) [f.IsCountablyGenerated] [g.IsCountablyGenerated] :
          (f g).IsCountablyGenerated
          instance Filter.map.isCountablyGenerated {α : Type u_1} {β : Type u_2} (l : Filter α) [l.IsCountablyGenerated] (f : αβ) :
          (map f l).IsCountablyGenerated
          instance Filter.comap.isCountablyGenerated {α : Type u_1} {β : Type u_2} (l : Filter β) [l.IsCountablyGenerated] (f : αβ) :
          (comap f l).IsCountablyGenerated
          instance Filter.Sup.isCountablyGenerated {α : Type u_1} (f g : Filter α) [f.IsCountablyGenerated] [g.IsCountablyGenerated] :
          (f g).IsCountablyGenerated
          instance Filter.prod.isCountablyGenerated {α : Type u_1} {β : Type u_2} (la : Filter α) (lb : Filter β) [la.IsCountablyGenerated] [lb.IsCountablyGenerated] :
          (la ×ˢ lb).IsCountablyGenerated
          instance Filter.coprod.isCountablyGenerated {α : Type u_1} {β : Type u_2} (la : Filter α) (lb : Filter β) [la.IsCountablyGenerated] [lb.IsCountablyGenerated] :
          (la.coprod lb).IsCountablyGenerated
          theorem Filter.isCountablyGenerated_seq {α : Type u_1} {ι' : Sort u_5} [Countable ι'] (x : ι'Set α) :
          (⨅ (i : ι'), principal (x i)).IsCountablyGenerated
          theorem Filter.isCountablyGenerated_of_seq {α : Type u_1} {f : Filter α} (h : ∃ (x : Set α), f = ⨅ (i : ), principal (x i)) :
          f.IsCountablyGenerated
          theorem Filter.isCountablyGenerated_biInf_principal {α : Type u_1} {B : Set (Set α)} (h : B.Countable) :
          (⨅ sB, principal s).IsCountablyGenerated
          theorem Filter.isCountablyGenerated_iff_exists_antitone_basis {α : Type u_1} {f : Filter α} :
          f.IsCountablyGenerated ∃ (x : Set α), f.HasAntitoneBasis x
          instance Filter.isCountablyGenerated_principal {α : Type u_1} (s : Set α) :
          (principal s).IsCountablyGenerated
          instance Filter.isCountablyGenerated_pure {α : Type u_1} (a : α) :
          (pure a).IsCountablyGenerated
          instance Filter.isCountablyGenerated_bot {α : Type u_1} :
          .IsCountablyGenerated
          instance Filter.isCountablyGenerated_top {α : Type u_1} :
          .IsCountablyGenerated
          instance Filter.iInf.isCountablyGenerated {ι : Sort u} {α : Type v} [Countable ι] (f : ιFilter α) [∀ (i : ι), (f i).IsCountablyGenerated] :
          (⨅ (i : ι), f i).IsCountablyGenerated
          instance Filter.pi.isCountablyGenerated {ι : Type u_6} {α : ιType u_7} [Countable ι] (f : (i : ι) → Filter (α i)) [∀ (i : ι), (f i).IsCountablyGenerated] :
          (pi f).IsCountablyGenerated