Documentation

Mathlib.Order.Filter.Tendsto

Convergence in terms of filters #

The general notion of limit of a map with respect to filters on the source and target types is Filter.Tendsto. It is defined in terms of the order and the push-forward operation.

For instance, anticipating on Topology.Basic, the statement: "if a sequence u converges to some x and u n belongs to a set M for n large enough then x is in the closure of M" is formalized as: Tendsto u atTop (𝓝 x) → (∀ᶠ n in atTop, u n ∈ M) → x ∈ closure M, which is a special case of mem_closure_of_tendsto from Topology/Basic.

theorem Filter.tendsto_def {α : Type u_1} {β : Type u_2} {f : αβ} {l₁ : Filter α} {l₂ : Filter β} :
Tendsto f l₁ l₂ sl₂, f ⁻¹' s l₁
theorem Filter.tendsto_iff_eventually {α : Type u_1} {β : Type u_2} {f : αβ} {l₁ : Filter α} {l₂ : Filter β} :
Tendsto f l₁ l₂ ∀ ⦃p : βProp⦄, (∀ᶠ (y : β) in l₂, p y)∀ᶠ (x : α) in l₁, p (f x)
theorem Filter.tendsto_iff_forall_eventually_mem {α : Type u_1} {β : Type u_2} {f : αβ} {l₁ : Filter α} {l₂ : Filter β} :
Tendsto f l₁ l₂ sl₂, ∀ᶠ (x : α) in l₁, f x s
theorem Filter.Tendsto.eventually_mem {α : Type u_1} {β : Type u_2} {f : αβ} {l₁ : Filter α} {l₂ : Filter β} {s : Set β} (hf : Tendsto f l₁ l₂) (h : s l₂) :
∀ᶠ (x : α) in l₁, f x s
theorem Filter.Tendsto.eventually {α : Type u_1} {β : Type u_2} {f : αβ} {l₁ : Filter α} {l₂ : Filter β} {p : βProp} (hf : Tendsto f l₁ l₂) (h : ∀ᶠ (y : β) in l₂, p y) :
∀ᶠ (x : α) in l₁, p (f x)
theorem Filter.not_tendsto_iff_exists_frequently_nmem {α : Type u_1} {β : Type u_2} {f : αβ} {l₁ : Filter α} {l₂ : Filter β} :
¬Tendsto f l₁ l₂ sl₂, ∃ᶠ (x : α) in l₁, f xs
theorem Filter.Tendsto.frequently {α : Type u_1} {β : Type u_2} {f : αβ} {l₁ : Filter α} {l₂ : Filter β} {p : βProp} (hf : Tendsto f l₁ l₂) (h : ∃ᶠ (x : α) in l₁, p (f x)) :
∃ᶠ (y : β) in l₂, p y
theorem Filter.Tendsto.frequently_map {α : Type u_1} {β : Type u_2} {l₁ : Filter α} {l₂ : Filter β} {p : αProp} {q : βProp} (f : αβ) (c : Tendsto f l₁ l₂) (w : ∀ (x : α), p xq (f x)) (h : ∃ᶠ (x : α) in l₁, p x) :
∃ᶠ (y : β) in l₂, q y
@[simp]
theorem Filter.tendsto_bot {α : Type u_1} {β : Type u_2} {f : αβ} {l : Filter β} :
theorem Filter.Tendsto.of_neBot_imp {α : Type u_1} {β : Type u_2} {f : αβ} {la : Filter α} {lb : Filter β} (h : la.NeBotTendsto f la lb) :
Tendsto f la lb
@[simp]
theorem Filter.tendsto_top {α : Type u_1} {β : Type u_2} {f : αβ} {l : Filter α} :
theorem Filter.le_map_of_right_inverse {α : Type u_1} {β : Type u_2} {mab : αβ} {mba : βα} {f : Filter α} {g : Filter β} (h₁ : mab mba =ᶠ[g] id) (h₂ : Tendsto mba g f) :
g map mab f
theorem Filter.tendsto_of_isEmpty {α : Type u_1} {β : Type u_2} [IsEmpty α] {f : αβ} {la : Filter α} {lb : Filter β} :
Tendsto f la lb
theorem Filter.eventuallyEq_of_left_inv_of_right_inv {α : Type u_1} {β : Type u_2} {f : αβ} {g₁ g₂ : βα} {fa : Filter α} {fb : Filter β} (hleft : ∀ᶠ (x : α) in fa, g₁ (f x) = x) (hright : ∀ᶠ (y : β) in fb, f (g₂ y) = y) (htendsto : Tendsto g₂ fb fa) :
g₁ =ᶠ[fb] g₂
theorem Filter.tendsto_iff_comap {α : Type u_1} {β : Type u_2} {f : αβ} {l₁ : Filter α} {l₂ : Filter β} :
Tendsto f l₁ l₂ l₁ comap f l₂
theorem Filter.Tendsto.le_comap {α : Type u_1} {β : Type u_2} {f : αβ} {l₁ : Filter α} {l₂ : Filter β} :
Tendsto f l₁ l₂l₁ comap f l₂

Alias of the forward direction of Filter.tendsto_iff_comap.

theorem Filter.Tendsto.disjoint {α : Type u_1} {β : Type u_2} {f : αβ} {la₁ la₂ : Filter α} {lb₁ lb₂ : Filter β} (h₁ : Tendsto f la₁ lb₁) (hd : Disjoint lb₁ lb₂) (h₂ : Tendsto f la₂ lb₂) :
Disjoint la₁ la₂
theorem Filter.tendsto_congr' {α : Type u_1} {β : Type u_2} {f₁ f₂ : αβ} {l₁ : Filter α} {l₂ : Filter β} (hl : f₁ =ᶠ[l₁] f₂) :
Tendsto f₁ l₁ l₂ Tendsto f₂ l₁ l₂
theorem Filter.Tendsto.congr' {α : Type u_1} {β : Type u_2} {f₁ f₂ : αβ} {l₁ : Filter α} {l₂ : Filter β} (hl : f₁ =ᶠ[l₁] f₂) (h : Tendsto f₁ l₁ l₂) :
Tendsto f₂ l₁ l₂
theorem Filter.tendsto_congr {α : Type u_1} {β : Type u_2} {f₁ f₂ : αβ} {l₁ : Filter α} {l₂ : Filter β} (h : ∀ (x : α), f₁ x = f₂ x) :
Tendsto f₁ l₁ l₂ Tendsto f₂ l₁ l₂
theorem Filter.Tendsto.congr {α : Type u_1} {β : Type u_2} {f₁ f₂ : αβ} {l₁ : Filter α} {l₂ : Filter β} (h : ∀ (x : α), f₁ x = f₂ x) :
Tendsto f₁ l₁ l₂Tendsto f₂ l₁ l₂
theorem Filter.tendsto_id' {α : Type u_1} {x y : Filter α} :
Tendsto id x y x y
theorem Filter.tendsto_id {α : Type u_1} {x : Filter α} :
theorem Filter.Tendsto.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : αβ} {g : βγ} {x : Filter α} {y : Filter β} {z : Filter γ} (hg : Tendsto g y z) (hf : Tendsto f x y) :
Tendsto (g f) x z
theorem Filter.Tendsto.iterate {α : Type u_1} {f : αα} {l : Filter α} (h : Tendsto f l l) (n : ) :
Tendsto f^[n] l l
theorem Filter.Tendsto.mono_left {α : Type u_1} {β : Type u_2} {f : αβ} {x y : Filter α} {z : Filter β} (hx : Tendsto f x z) (h : y x) :
Tendsto f y z
theorem Filter.Tendsto.mono_right {α : Type u_1} {β : Type u_2} {f : αβ} {x : Filter α} {y z : Filter β} (hy : Tendsto f x y) (hz : y z) :
Tendsto f x z
theorem Filter.Tendsto.neBot {α : Type u_1} {β : Type u_2} {f : αβ} {x : Filter α} {y : Filter β} (h : Tendsto f x y) [hx : x.NeBot] :
y.NeBot
theorem Filter.tendsto_map {α : Type u_1} {β : Type u_2} {f : αβ} {x : Filter α} :
Tendsto f x (map f x)
@[simp]
theorem Filter.tendsto_map'_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : βγ} {g : αβ} {x : Filter α} {y : Filter γ} :
Tendsto f (map g x) y Tendsto (f g) x y
theorem Filter.tendsto_map' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : βγ} {g : αβ} {x : Filter α} {y : Filter γ} :
Tendsto (f g) x yTendsto f (map g x) y

Alias of the reverse direction of Filter.tendsto_map'_iff.

theorem Filter.tendsto_comap {α : Type u_1} {β : Type u_2} {f : αβ} {x : Filter β} :
Tendsto f (comap f x) x
@[simp]
theorem Filter.tendsto_comap_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : αβ} {g : βγ} {a : Filter α} {c : Filter γ} :
Tendsto f a (comap g c) Tendsto (g f) a c
theorem Filter.tendsto_comap'_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} {m : αβ} {f : Filter α} {g : Filter β} {i : γα} (h : Set.range i f) :
Tendsto (m i) (comap i f) g Tendsto m f g
theorem Filter.Tendsto.of_tendsto_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : αβ} {g : βγ} {a : Filter α} {b : Filter β} {c : Filter γ} (hfg : Tendsto (g f) a c) (hg : comap g c b) :
Tendsto f a b
theorem Filter.comap_eq_of_inverse {α : Type u_1} {β : Type u_2} {f : Filter α} {g : Filter β} {φ : αβ} (ψ : βα) (eq : ψ φ = id) (hφ : Tendsto φ f g) (hψ : Tendsto ψ g f) :
comap φ g = f
theorem Filter.map_eq_of_inverse {α : Type u_1} {β : Type u_2} {f : Filter α} {g : Filter β} {φ : αβ} (ψ : βα) (eq : φ ψ = id) (hφ : Tendsto φ f g) (hψ : Tendsto ψ g f) :
map φ f = g
theorem Filter.tendsto_inf {α : Type u_1} {β : Type u_2} {f : αβ} {x : Filter α} {y₁ y₂ : Filter β} :
Tendsto f x (y₁ y₂) Tendsto f x y₁ Tendsto f x y₂
theorem Filter.tendsto_inf_left {α : Type u_1} {β : Type u_2} {f : αβ} {x₁ x₂ : Filter α} {y : Filter β} (h : Tendsto f x₁ y) :
Tendsto f (x₁ x₂) y
theorem Filter.tendsto_inf_right {α : Type u_1} {β : Type u_2} {f : αβ} {x₁ x₂ : Filter α} {y : Filter β} (h : Tendsto f x₂ y) :
Tendsto f (x₁ x₂) y
theorem Filter.Tendsto.inf {α : Type u_1} {β : Type u_2} {f : αβ} {x₁ x₂ : Filter α} {y₁ y₂ : Filter β} (h₁ : Tendsto f x₁ y₁) (h₂ : Tendsto f x₂ y₂) :
Tendsto f (x₁ x₂) (y₁ y₂)
@[simp]
theorem Filter.tendsto_iInf {α : Type u_1} {β : Type u_2} {ι : Sort u_4} {f : αβ} {x : Filter α} {y : ιFilter β} :
Tendsto f x (⨅ (i : ι), y i) ∀ (i : ι), Tendsto f x (y i)
theorem Filter.tendsto_iInf' {α : Type u_1} {β : Type u_2} {ι : Sort u_4} {f : αβ} {x : ιFilter α} {y : Filter β} (i : ι) (hi : Tendsto f (x i) y) :
Tendsto f (⨅ (i : ι), x i) y
theorem Filter.tendsto_iInf_iInf {α : Type u_1} {β : Type u_2} {ι : Sort u_4} {f : αβ} {x : ιFilter α} {y : ιFilter β} (h : ∀ (i : ι), Tendsto f (x i) (y i)) :
Tendsto f (iInf x) (iInf y)
@[simp]
theorem Filter.tendsto_sup {α : Type u_1} {β : Type u_2} {f : αβ} {x₁ x₂ : Filter α} {y : Filter β} :
Tendsto f (x₁ x₂) y Tendsto f x₁ y Tendsto f x₂ y
theorem Filter.Tendsto.sup {α : Type u_1} {β : Type u_2} {f : αβ} {x₁ x₂ : Filter α} {y : Filter β} :
Tendsto f x₁ yTendsto f x₂ yTendsto f (x₁ x₂) y
theorem Filter.Tendsto.sup_sup {α : Type u_1} {β : Type u_2} {f : αβ} {x₁ x₂ : Filter α} {y₁ y₂ : Filter β} (h₁ : Tendsto f x₁ y₁) (h₂ : Tendsto f x₂ y₂) :
Tendsto f (x₁ x₂) (y₁ y₂)
@[simp]
theorem Filter.tendsto_iSup {α : Type u_1} {β : Type u_2} {ι : Sort u_4} {f : αβ} {x : ιFilter α} {y : Filter β} :
Tendsto f (⨆ (i : ι), x i) y ∀ (i : ι), Tendsto f (x i) y
theorem Filter.tendsto_iSup_iSup {α : Type u_1} {β : Type u_2} {ι : Sort u_4} {f : αβ} {x : ιFilter α} {y : ιFilter β} (h : ∀ (i : ι), Tendsto f (x i) (y i)) :
Tendsto f (iSup x) (iSup y)
@[simp]
theorem Filter.tendsto_principal {α : Type u_1} {β : Type u_2} {f : αβ} {l : Filter α} {s : Set β} :
Tendsto f l (principal s) ∀ᶠ (a : α) in l, f a s
theorem Filter.tendsto_principal_principal {α : Type u_1} {β : Type u_2} {f : αβ} {s : Set α} {t : Set β} :
Tendsto f (principal s) (principal t) as, f a t
@[simp]
theorem Filter.tendsto_pure {α : Type u_1} {β : Type u_2} {f : αβ} {a : Filter α} {b : β} :
Tendsto f a (pure b) ∀ᶠ (x : α) in a, f x = b
theorem Filter.tendsto_pure_pure {α : Type u_1} {β : Type u_2} (f : αβ) (a : α) :
Tendsto f (pure a) (pure (f a))
theorem Filter.tendsto_const_pure {α : Type u_1} {β : Type u_2} {a : Filter α} {b : β} :
Tendsto (fun (x : α) => b) a (pure b)
theorem Filter.pure_le_iff {α : Type u_1} {a : α} {l : Filter α} :
pure a l sl, a s
theorem Filter.tendsto_pure_left {α : Type u_1} {β : Type u_2} {f : αβ} {a : α} {l : Filter β} :
Tendsto f (pure a) l sl, f a s
@[simp]
theorem Filter.map_inf_principal_preimage {α : Type u_1} {β : Type u_2} {f : αβ} {s : Set β} {l : Filter α} :
map f (l principal (f ⁻¹' s)) = map f l principal s
theorem Filter.Tendsto.not_tendsto {α : Type u_1} {β : Type u_2} {f : αβ} {a : Filter α} {b₁ b₂ : Filter β} (hf : Tendsto f a b₁) [a.NeBot] (hb : Disjoint b₁ b₂) :
¬Tendsto f a b₂

If two filters are disjoint, then a function cannot tend to both of them along a non-trivial filter.

theorem Filter.Tendsto.if {α : Type u_1} {β : Type u_2} {l₁ : Filter α} {l₂ : Filter β} {f g : αβ} {p : αProp} [(x : α) → Decidable (p x)] (h₀ : Tendsto f (l₁ principal {x : α | p x}) l₂) (h₁ : Tendsto g (l₁ principal {x : α | ¬p x}) l₂) :
Tendsto (fun (x : α) => if p x then f x else g x) l₁ l₂
theorem Filter.Tendsto.if' {α : Type u_5} {β : Type u_6} {l₁ : Filter α} {l₂ : Filter β} {f g : αβ} {p : αProp} [DecidablePred p] (hf : Tendsto f l₁ l₂) (hg : Tendsto g l₁ l₂) :
Tendsto (fun (a : α) => if p a then f a else g a) l₁ l₂
theorem Filter.Tendsto.piecewise {α : Type u_1} {β : Type u_2} {l₁ : Filter α} {l₂ : Filter β} {f g : αβ} {s : Set α} [(x : α) → Decidable (x s)] (h₀ : Tendsto f (l₁ principal s) l₂) (h₁ : Tendsto g (l₁ principal s) l₂) :
Tendsto (s.piecewise f g) l₁ l₂
theorem Set.MapsTo.tendsto {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} {f : αβ} (h : MapsTo f s t) :
theorem Filter.EventuallyEq.comp_tendsto {α : Type u_1} {β : Type u_2} {γ : Type u_3} {l : Filter α} {f f' : αβ} (H : f =ᶠ[l] f') {g : γα} {lc : Filter γ} (hg : Tendsto g lc l) :
f g =ᶠ[lc] f' g
theorem Filter.map_mapsTo_Iic_iff_tendsto {α : Type u_1} {β : Type u_2} {F : Filter α} {G : Filter β} {m : αβ} :
theorem Filter.Tendsto.map_mapsTo_Iic {α : Type u_1} {β : Type u_2} {F : Filter α} {G : Filter β} {m : αβ} :
Tendsto m F GSet.MapsTo (map m) (Set.Iic F) (Set.Iic G)

Alias of the reverse direction of Filter.map_mapsTo_Iic_iff_tendsto.

theorem Filter.map_mapsTo_Iic_iff_mapsTo {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} {m : αβ} :
theorem Set.MapsTo.filter_map_Iic {α : Type u_1} {β : Type u_2} {s : Set α} {t : Set β} {m : αβ} :

Alias of the reverse direction of Filter.map_mapsTo_Iic_iff_mapsTo.