Order isomorphisms from Fin to finsets #
We define order isomorphisms like Fin.orderIsoTriple from Fin 3
to the finset {a, b, c} when a < b and b < c.
Future works #
This is the order isomorphism from Fin 1 to a finset {a}.
Equations
- Fin.orderIsoSingleton a = OrderIso.ofUnique (Fin 1) ↥{a}
Instances For
@[simp]
@[simp]
@[simp]
noncomputable def
Fin.orderIsoTriple
{α : Type u_1}
[Preorder α]
[DecidableEq α]
(a b c : α)
(hab : a < b)
(hbc : b < c)
:
This is the order isomorphism from Fin 3
to a finset {a, b, c} when a < b and b < c.
Equations
Instances For
@[simp]
theorem
Fin.orderIsoTriple_zero
{α : Type u_1}
[Preorder α]
[DecidableEq α]
(a b c : α)
(hab : a < b)
(hbc : b < c)
:
@[simp]
theorem
Fin.orderIsoTriple_one
{α : Type u_1}
[Preorder α]
[DecidableEq α]
(a b c : α)
(hab : a < b)
(hbc : b < c)
:
@[simp]
theorem
Fin.orderIsoTriple_two
{α : Type u_1}
[Preorder α]
[DecidableEq α]
(a b c : α)
(hab : a < b)
(hbc : b < c)
: