Order isomorphisms from Fin to finsets #
We define order isomorphisms like Fin.orderIsoTriple
from Fin 3
to the finset {a, b, c}
when a < b
and b < c
.
Future works #
@[simp]
noncomputable def
Fin.orderIsoPair
{α : Type u_1}
[Preorder α]
[DecidableEq α]
(a b : α)
(hab : a < b)
:
This is the order isomorphism from Fin 2
to a finset {a, b}
when a < b
.
Equations
- Fin.orderIsoPair a b hab = StrictMono.orderIsoOfSurjective ![⟨a, ⋯⟩, ⟨b, ⋯⟩] ⋯ ⋯
Instances For
@[simp]
@[simp]
noncomputable def
Fin.orderIsoTriple
{α : Type u_1}
[Preorder α]
[DecidableEq α]
(a b c : α)
(hab : a < b)
(hbc : b < c)
:
This is the order isomorphism from Fin 3
to a finset {a, b, c}
when a < b
and b < c
.
Equations
- Fin.orderIsoTriple a b c hab hbc = StrictMono.orderIsoOfSurjective ![⟨a, ⋯⟩, ⟨b, ⋯⟩, ⟨c, ⋯⟩] ⋯ ⋯
Instances For
@[simp]
theorem
Fin.orderIsoTriple_zero
{α : Type u_1}
[Preorder α]
[DecidableEq α]
(a b c : α)
(hab : a < b)
(hbc : b < c)
:
@[simp]
theorem
Fin.orderIsoTriple_one
{α : Type u_1}
[Preorder α]
[DecidableEq α]
(a b c : α)
(hab : a < b)
(hbc : b < c)
:
@[simp]
theorem
Fin.orderIsoTriple_two
{α : Type u_1}
[Preorder α]
[DecidableEq α]
(a b c : α)
(hab : a < b)
(hbc : b < c)
: