Documentation
Mathlib
.
Order
.
Prod
.
Lex
.
Hom
Search
return to top
source
Imports
Init
Mathlib.Data.Prod.Lex
Mathlib.Order.Hom.Basic
Imported by
Prod
.
Lex
.
toLexOrderHom
Prod
.
Lex
.
toLexOrderHom_coe
Order homomorphism for
Prod.Lex
#
source
def
Prod
.
Lex
.
toLexOrderHom
{
α
:
Type
u_1}
{
β
:
Type
u_2}
[
PartialOrder
α
]
[
Preorder
β
]
:
α
×
β
→o
Lex
(
α
×
β
)
toLex
as an
OrderHom
.
Equations
Prod.Lex.toLexOrderHom
=
{
toFun
:=
⇑
toLex
,
monotone'
:=
⋯
}
Instances For
source
@[simp]
theorem
Prod
.
Lex
.
toLexOrderHom_coe
{
α
:
Type
u_1}
{
β
:
Type
u_2}
[
PartialOrder
α
]
[
Preorder
β
]
(
a
:
α
×
β
)
:
toLexOrderHom
a
=
toLex
a