Documentation

Mathlib.Order.SaddlePoint

Saddle points of a map #

theorem iSup₂_iInf₂_le_iInf₂_iSup₂ {E : Type u_1} {F : Type u_2} {β : Type u_3} (X : Set E) (Y : Set F) (f : EFβ) [CompleteLinearOrder β] :
yY, xX, f x y xX, yY, f x y

The trivial minimax inequality

def IsSaddlePointOn {E : Type u_1} {F : Type u_2} {β : Type u_3} (X : Set E) (Y : Set F) (f : EFβ) [Preorder β] (a : E) (b : F) :

The pair (a, b) is a saddle point of f on X × Y if f a y ≤ f x b for all x ∈ X and all y in Y`.

Note: we do not require that a ∈ X and b ∈ Y.

Equations
Instances For
    theorem IsSaddlePointOn.swap_left {E : Type u_1} {F : Type u_2} {β : Type u_3} {X : Set E} {Y : Set F} {f : EFβ} [Preorder β] {a a' : E} {b b' : F} (ha' : a' X) (hb : b Y) (h : IsSaddlePointOn X Y f a b) (h' : IsSaddlePointOn X Y f a' b') :
    IsSaddlePointOn X Y f a b'
    theorem IsSaddlePointOn.swap_right {E : Type u_1} {F : Type u_2} {β : Type u_3} {X : Set E} {Y : Set F} {f : EFβ} [Preorder β] {a a' : E} {b b' : F} (ha : a X) (hb' : b' Y) (h : IsSaddlePointOn X Y f a b) (h' : IsSaddlePointOn X Y f a' b') :
    IsSaddlePointOn X Y f a' b
    theorem isSaddlePointOn_iff {E : Type u_1} {F : Type u_2} {β : Type u_3} {X : Set E} {Y : Set F} {f : EFβ} [CompleteLinearOrder β] {a : E} (ha : a X) {b : F} (hb : b Y) :
    IsSaddlePointOn X Y f a b yY, f a y = f a b xX, f x b = f a b
    theorem isSaddlePointOn_iff' {E : Type u_1} {F : Type u_2} {β : Type u_3} {X : Set E} {Y : Set F} {f : EFβ} [CompleteLinearOrder β] {a : E} (ha : a X) {b : F} (hb : b Y) :
    IsSaddlePointOn X Y f a b yY, f a y xX, f x b
    theorem isSaddlePointOn_value {E : Type u_1} {F : Type u_2} {β : Type u_3} {X : Set E} {Y : Set F} {f : EFβ} [CompleteLinearOrder β] {a : E} (ha : a X) {b : F} (hb : b Y) (h : IsSaddlePointOn X Y f a b) :
    xX, yY, f x y = f a b yY, xX, f x y = f a b

    Minimax formulation of saddle points