Saddle points of a map #
IsSaddlePointOn. Letf : E × F → βbe a map, whereβis preordered. A pair(a,b)inE × Fis a saddle point offonX × Yiff a y ≤ f x bfor allx ∈ Xand allyin Y`.isSaddlePointOn_iff: ifβis a complete linear order, then(a, b) ∈ X × Yis a saddle point onX × Yiff⨆ y ∈ Y, f a y = ⨅ x ∈ X, f x b = f a b.
theorem
iSup₂_iInf₂_le_iInf₂_iSup₂
{E : Type u_1}
{F : Type u_2}
{β : Type u_3}
(X : Set E)
(Y : Set F)
(f : E → F → β)
[CompleteLinearOrder β]
:
The trivial minimax inequality
def
IsSaddlePointOn
{E : Type u_1}
{F : Type u_2}
{β : Type u_3}
(X : Set E)
(Y : Set F)
(f : E → F → β)
[Preorder β]
(a : E)
(b : F)
:
The pair (a, b) is a saddle point of f on X × Y
if f a y ≤ f x b for all x ∈ X and all y in Y`.
Note: we do not require that a ∈ X and b ∈ Y.
Equations
- IsSaddlePointOn X Y f a b = ∀ x ∈ X, ∀ y ∈ Y, f a y ≤ f x b
Instances For
theorem
IsSaddlePointOn.swap_left
{E : Type u_1}
{F : Type u_2}
{β : Type u_3}
{X : Set E}
{Y : Set F}
{f : E → F → β}
[Preorder β]
{a a' : E}
{b b' : F}
(ha' : a' ∈ X)
(hb : b ∈ Y)
(h : IsSaddlePointOn X Y f a b)
(h' : IsSaddlePointOn X Y f a' b')
:
IsSaddlePointOn X Y f a b'
theorem
IsSaddlePointOn.swap_right
{E : Type u_1}
{F : Type u_2}
{β : Type u_3}
{X : Set E}
{Y : Set F}
{f : E → F → β}
[Preorder β]
{a a' : E}
{b b' : F}
(ha : a ∈ X)
(hb' : b' ∈ Y)
(h : IsSaddlePointOn X Y f a b)
(h' : IsSaddlePointOn X Y f a' b')
:
IsSaddlePointOn X Y f a' b
theorem
isSaddlePointOn_iff
{E : Type u_1}
{F : Type u_2}
{β : Type u_3}
{X : Set E}
{Y : Set F}
{f : E → F → β}
[CompleteLinearOrder β]
{a : E}
(ha : a ∈ X)
{b : F}
(hb : b ∈ Y)
:
theorem
isSaddlePointOn_iff'
{E : Type u_1}
{F : Type u_2}
{β : Type u_3}
{X : Set E}
{Y : Set F}
{f : E → F → β}
[CompleteLinearOrder β]
{a : E}
(ha : a ∈ X)
{b : F}
(hb : b ∈ Y)
:
theorem
isSaddlePointOn_value
{E : Type u_1}
{F : Type u_2}
{β : Type u_3}
{X : Set E}
{Y : Set F}
{f : E → F → β}
[CompleteLinearOrder β]
{a : E}
(ha : a ∈ X)
{b : F}
(hb : b ∈ Y)
(h : IsSaddlePointOn X Y f a b)
:
Minimax formulation of saddle points