Initial segments and successors #
We establish some connections between initial segment embeddings and successors and predecessors.
@[simp]
theorem
InitialSeg.apply_covBy_apply_iff
{α : Type u_1}
{β : Type u_2}
{a b : α}
[PartialOrder α]
[PartialOrder β]
(f : (fun (x1 x2 : α) => x1 < x2) ≼i fun (x1 x2 : β) => x1 < x2)
:
@[simp]
theorem
InitialSeg.apply_wCovBy_apply_iff
{α : Type u_1}
{β : Type u_2}
{a b : α}
[PartialOrder α]
[PartialOrder β]
(f : (fun (x1 x2 : α) => x1 < x2) ≼i fun (x1 x2 : β) => x1 < x2)
:
theorem
InitialSeg.map_succ
{α : Type u_1}
{β : Type u_2}
[PartialOrder α]
[PartialOrder β]
[SuccOrder α]
[NoMaxOrder α]
[SuccOrder β]
(f : (fun (x1 x2 : α) => x1 < x2) ≼i fun (x1 x2 : β) => x1 < x2)
(a : α)
:
f (Order.succ a) = Order.succ (f a)
theorem
InitialSeg.map_pred
{α : Type u_1}
{β : Type u_2}
[PartialOrder α]
[PartialOrder β]
[PredOrder α]
[NoMinOrder α]
[PredOrder β]
(f : (fun (x1 x2 : α) => x1 < x2) ≼i fun (x1 x2 : β) => x1 < x2)
(a : α)
:
f (Order.pred a) = Order.pred (f a)
@[simp]
theorem
InitialSeg.isSuccPrelimit_apply_iff
{α : Type u_1}
{β : Type u_2}
{a : α}
[PartialOrder α]
[PartialOrder β]
(f : (fun (x1 x2 : α) => x1 < x2) ≼i fun (x1 x2 : β) => x1 < x2)
:
@[simp]
theorem
InitialSeg.isSuccLimit_apply_iff
{α : Type u_1}
{β : Type u_2}
{a : α}
[PartialOrder α]
[PartialOrder β]
(f : (fun (x1 x2 : α) => x1 < x2) ≼i fun (x1 x2 : β) => x1 < x2)
:
Order.IsSuccLimit (f a) ↔ Order.IsSuccLimit a
@[simp]
theorem
PrincipalSeg.apply_covBy_apply_iff
{α : Type u_1}
{β : Type u_2}
{a b : α}
[PartialOrder α]
[PartialOrder β]
(f : (fun (x1 x2 : α) => x1 < x2) ≺i fun (x1 x2 : β) => x1 < x2)
:
@[simp]
theorem
PrincipalSeg.apply_wCovBy_apply_iff
{α : Type u_1}
{β : Type u_2}
{a b : α}
[PartialOrder α]
[PartialOrder β]
(f : (fun (x1 x2 : α) => x1 < x2) ≺i fun (x1 x2 : β) => x1 < x2)
:
theorem
PrincipalSeg.map_succ
{α : Type u_1}
{β : Type u_2}
[PartialOrder α]
[PartialOrder β]
[SuccOrder α]
[NoMaxOrder α]
[SuccOrder β]
(f : (fun (x1 x2 : α) => x1 < x2) ≺i fun (x1 x2 : β) => x1 < x2)
(a : α)
:
f.toRelEmbedding (Order.succ a) = Order.succ (f.toRelEmbedding a)
theorem
PrincipalSeg.map_pred
{α : Type u_1}
{β : Type u_2}
[PartialOrder α]
[PartialOrder β]
[PredOrder α]
[NoMinOrder α]
[PredOrder β]
(f : (fun (x1 x2 : α) => x1 < x2) ≼i fun (x1 x2 : β) => x1 < x2)
(a : α)
:
f (Order.pred a) = Order.pred (f a)
@[simp]
theorem
PrincipalSeg.isSuccPrelimit_apply_iff
{α : Type u_1}
{β : Type u_2}
{a : α}
[PartialOrder α]
[PartialOrder β]
(f : (fun (x1 x2 : α) => x1 < x2) ≺i fun (x1 x2 : β) => x1 < x2)
:
Order.IsSuccPrelimit (f.toRelEmbedding a) ↔ Order.IsSuccPrelimit a
@[simp]
theorem
PrincipalSeg.isSuccLimit_apply_iff
{α : Type u_1}
{β : Type u_2}
{a : α}
[PartialOrder α]
[PartialOrder β]
(f : (fun (x1 x2 : α) => x1 < x2) ≺i fun (x1 x2 : β) => x1 < x2)
:
Order.IsSuccLimit (f.toRelEmbedding a) ↔ Order.IsSuccLimit a