Documentation

Mathlib.Order.SuccPred.InitialSeg

Initial segments and successors #

We establish some connections between initial segment embeddings and successors and predecessors.

@[simp]
theorem InitialSeg.apply_covBy_apply_iff {α : Type u_1} {β : Type u_2} {a b : α} [PartialOrder α] [PartialOrder β] (f : (fun (x1 x2 : α) => x1 < x2) ≼i fun (x1 x2 : β) => x1 < x2) :
f a f b a b
@[simp]
theorem InitialSeg.apply_wCovBy_apply_iff {α : Type u_1} {β : Type u_2} {a b : α} [PartialOrder α] [PartialOrder β] (f : (fun (x1 x2 : α) => x1 < x2) ≼i fun (x1 x2 : β) => x1 < x2) :
f a ⩿ f b a ⩿ b
theorem InitialSeg.map_succ {α : Type u_1} {β : Type u_2} [PartialOrder α] [PartialOrder β] [SuccOrder α] [NoMaxOrder α] [SuccOrder β] (f : (fun (x1 x2 : α) => x1 < x2) ≼i fun (x1 x2 : β) => x1 < x2) (a : α) :
f (Order.succ a) = Order.succ (f a)
theorem InitialSeg.map_pred {α : Type u_1} {β : Type u_2} [PartialOrder α] [PartialOrder β] [PredOrder α] [NoMinOrder α] [PredOrder β] (f : (fun (x1 x2 : α) => x1 < x2) ≼i fun (x1 x2 : β) => x1 < x2) (a : α) :
f (Order.pred a) = Order.pred (f a)
@[simp]
theorem InitialSeg.isSuccPrelimit_apply_iff {α : Type u_1} {β : Type u_2} {a : α} [PartialOrder α] [PartialOrder β] (f : (fun (x1 x2 : α) => x1 < x2) ≼i fun (x1 x2 : β) => x1 < x2) :
@[simp]
theorem InitialSeg.isSuccLimit_apply_iff {α : Type u_1} {β : Type u_2} {a : α} [PartialOrder α] [PartialOrder β] (f : (fun (x1 x2 : α) => x1 < x2) ≼i fun (x1 x2 : β) => x1 < x2) :
@[simp]
theorem PrincipalSeg.apply_covBy_apply_iff {α : Type u_1} {β : Type u_2} {a b : α} [PartialOrder α] [PartialOrder β] (f : (fun (x1 x2 : α) => x1 < x2) ≺i fun (x1 x2 : β) => x1 < x2) :
f.toRelEmbedding a f.toRelEmbedding b a b
@[simp]
theorem PrincipalSeg.apply_wCovBy_apply_iff {α : Type u_1} {β : Type u_2} {a b : α} [PartialOrder α] [PartialOrder β] (f : (fun (x1 x2 : α) => x1 < x2) ≺i fun (x1 x2 : β) => x1 < x2) :
f.toRelEmbedding a ⩿ f.toRelEmbedding b a ⩿ b
theorem PrincipalSeg.map_succ {α : Type u_1} {β : Type u_2} [PartialOrder α] [PartialOrder β] [SuccOrder α] [NoMaxOrder α] [SuccOrder β] (f : (fun (x1 x2 : α) => x1 < x2) ≺i fun (x1 x2 : β) => x1 < x2) (a : α) :
f.toRelEmbedding (Order.succ a) = Order.succ (f.toRelEmbedding a)
theorem PrincipalSeg.map_pred {α : Type u_1} {β : Type u_2} [PartialOrder α] [PartialOrder β] [PredOrder α] [NoMinOrder α] [PredOrder β] (f : (fun (x1 x2 : α) => x1 < x2) ≼i fun (x1 x2 : β) => x1 < x2) (a : α) :
f (Order.pred a) = Order.pred (f a)
@[simp]
theorem PrincipalSeg.isSuccPrelimit_apply_iff {α : Type u_1} {β : Type u_2} {a : α} [PartialOrder α] [PartialOrder β] (f : (fun (x1 x2 : α) => x1 < x2) ≺i fun (x1 x2 : β) => x1 < x2) :
@[simp]
theorem PrincipalSeg.isSuccLimit_apply_iff {α : Type u_1} {β : Type u_2} {a : α} [PartialOrder α] [PartialOrder β] (f : (fun (x1 x2 : α) => x1 < x2) ≺i fun (x1 x2 : β) => x1 < x2) :
Order.IsSuccLimit (f.toRelEmbedding a) Order.IsSuccLimit a