Documentation

Mathlib.Order.TeichmullerTukey

Teichmuller-Tukey #

This file defines the notion of being of finite character for a family of sets and proves the Teichmuller-Tukey lemma.

Main definitions #

Main results #

References #

def Order.IsOfFiniteCharacter {α : Type u_1} (F : Set (Set α)) :

A family of sets $F$ is of finite character iff for every set $X$, $X ∈ F$ iff every finite subset of $X$ is in $F$

Equations
Instances For
    theorem Order.IsOfFiniteCharacter.exists_maximal {α : Type u_1} {F : Set (Set α)} (hF : IsOfFiniteCharacter F) {x : Set α} (xF : x F) :
    ∃ (m : Set α), x m Maximal (fun (x : Set α) => x F) m

    Teichmuller-Tukey lemma. Every nonempty family of finite character has a maximal element.