Documentation

Mathlib.Order.ZornAtoms

Zorn lemma for (co)atoms #

In this file we use Zorn's lemma to prove that a partial order is atomic if every nonempty chain c, ⊥ ∉ c, has a lower bound not equal to . We also prove the order dual version of this statement.

theorem IsCoatomic.of_isChain_bounded {α : Type u_1} [PartialOrder α] [OrderTop α] (h : ∀ (c : Set α), IsChain (fun (x1 x2 : α) => LE.le x1 x2) cc.NonemptyNot (Membership.mem c Top.top)Exists fun (x : α) => And (Ne x Top.top) (Membership.mem (upperBounds c) x)) :

Zorn's lemma: A partial order is coatomic if every nonempty chain c, ⊤ ∉ c, has an upper bound not equal to .

theorem IsAtomic.of_isChain_bounded {α : Type u_1} [PartialOrder α] [OrderBot α] (h : ∀ (c : Set α), IsChain (fun (x1 x2 : α) => LE.le x1 x2) cc.NonemptyNot (Membership.mem c Bot.bot)Exists fun (x : α) => And (Ne x Bot.bot) (Membership.mem (lowerBounds c) x)) :

Zorn's lemma: A partial order is atomic if every nonempty chain c, ⊥ ∉ c, has a lower bound not equal to .